一种新的夜视图像融合质量自动评估算法

Yin Chen, Rick S. Blum
{"title":"一种新的夜视图像融合质量自动评估算法","authors":"Yin Chen, Rick S. Blum","doi":"10.1109/CISS.2007.4298361","DOIUrl":null,"url":null,"abstract":"In this paper we propose a perceptual quality evaluation method for image fusion which is based on human visual system (HVS) models. Our method assesses the image quality of a fused image using the following steps. First the source and fused images are filtered by a contrast sensitivity function (CSF) after which a local contrast map is computed for each image. Second, a contrast preservation map is generated to describe the relationship between the fused image and each source image. Finally, the preservation maps are weighted by a saliency map to obtain an overall quality map. The mean of the quality map indicates the quality for the fused image. Experimental results compare the predictions made by our algorithm with human perceptual evaluations for several different parameter settings in our algorithm. For some specific parameter settings, we find our algorithm provides better predictions, which are more closely matched to human perceptual evaluations, than the existing algorithms.","PeriodicalId":151241,"journal":{"name":"2007 41st Annual Conference on Information Sciences and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A New Automated Quality Assessment Algorithm for Night Vision Image Fusion\",\"authors\":\"Yin Chen, Rick S. Blum\",\"doi\":\"10.1109/CISS.2007.4298361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a perceptual quality evaluation method for image fusion which is based on human visual system (HVS) models. Our method assesses the image quality of a fused image using the following steps. First the source and fused images are filtered by a contrast sensitivity function (CSF) after which a local contrast map is computed for each image. Second, a contrast preservation map is generated to describe the relationship between the fused image and each source image. Finally, the preservation maps are weighted by a saliency map to obtain an overall quality map. The mean of the quality map indicates the quality for the fused image. Experimental results compare the predictions made by our algorithm with human perceptual evaluations for several different parameter settings in our algorithm. For some specific parameter settings, we find our algorithm provides better predictions, which are more closely matched to human perceptual evaluations, than the existing algorithms.\",\"PeriodicalId\":151241,\"journal\":{\"name\":\"2007 41st Annual Conference on Information Sciences and Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 41st Annual Conference on Information Sciences and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2007.4298361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 41st Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2007.4298361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种基于人类视觉系统(HVS)模型的图像融合感知质量评价方法。我们的方法使用以下步骤评估融合图像的图像质量。首先通过对比灵敏度函数(CSF)对源图像和融合图像进行滤波,然后计算每个图像的局部对比图。其次,生成对比度保持映射来描述融合图像与每个源图像之间的关系;最后,通过显著性图对保存图进行加权,得到整体质量图。质量图的均值表示融合后图像的质量。实验结果比较了我们的算法对几个不同参数设置的预测与人类感知评估。对于一些特定的参数设置,我们发现我们的算法提供了更好的预测,比现有的算法更接近人类的感知评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Automated Quality Assessment Algorithm for Night Vision Image Fusion
In this paper we propose a perceptual quality evaluation method for image fusion which is based on human visual system (HVS) models. Our method assesses the image quality of a fused image using the following steps. First the source and fused images are filtered by a contrast sensitivity function (CSF) after which a local contrast map is computed for each image. Second, a contrast preservation map is generated to describe the relationship between the fused image and each source image. Finally, the preservation maps are weighted by a saliency map to obtain an overall quality map. The mean of the quality map indicates the quality for the fused image. Experimental results compare the predictions made by our algorithm with human perceptual evaluations for several different parameter settings in our algorithm. For some specific parameter settings, we find our algorithm provides better predictions, which are more closely matched to human perceptual evaluations, than the existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信