基于量子k均值聚类算法的RNA-Seq癌症转录组分析

Abrar-Ul-Haq, Talal Bonny
{"title":"基于量子k均值聚类算法的RNA-Seq癌症转录组分析","authors":"Abrar-Ul-Haq, Talal Bonny","doi":"10.1109/ASET48392.2020.9118341","DOIUrl":null,"url":null,"abstract":"A quantified RNA transcriptome is of particular interest in biomedical research as it can be for cancer diagnosis. Quantum algorithms can give exponential performance gains over their classical counterparts. In this paper, we implement a quantum clustering technique to classify the cells into different cancer types. To verify our implementation, we test it using the standard ‘gene expression cancer RNA-Seq’ dataset. The experimental results show that our algorithm achieves high accuracy of 94.8% (on average) in classifying the different types of cancer.","PeriodicalId":237887,"journal":{"name":"2020 Advances in Science and Engineering Technology International Conferences (ASET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Cancer Transcriptome Analysis with RNA-Seq Using Quantum K-means Clustering Algorithm\",\"authors\":\"Abrar-Ul-Haq, Talal Bonny\",\"doi\":\"10.1109/ASET48392.2020.9118341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quantified RNA transcriptome is of particular interest in biomedical research as it can be for cancer diagnosis. Quantum algorithms can give exponential performance gains over their classical counterparts. In this paper, we implement a quantum clustering technique to classify the cells into different cancer types. To verify our implementation, we test it using the standard ‘gene expression cancer RNA-Seq’ dataset. The experimental results show that our algorithm achieves high accuracy of 94.8% (on average) in classifying the different types of cancer.\",\"PeriodicalId\":237887,\"journal\":{\"name\":\"2020 Advances in Science and Engineering Technology International Conferences (ASET)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Advances in Science and Engineering Technology International Conferences (ASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASET48392.2020.9118341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Advances in Science and Engineering Technology International Conferences (ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASET48392.2020.9118341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

定量的RNA转录组在生物医学研究中特别有趣,因为它可以用于癌症诊断。量子算法可以提供指数级的性能增益。在本文中,我们实现了一种量子聚类技术,将细胞分类为不同的癌症类型。为了验证我们的实现,我们使用标准的“基因表达癌症RNA-Seq”数据集进行测试。实验结果表明,我们的算法在对不同类型的癌症进行分类时,准确率达到了94.8%(平均)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cancer Transcriptome Analysis with RNA-Seq Using Quantum K-means Clustering Algorithm
A quantified RNA transcriptome is of particular interest in biomedical research as it can be for cancer diagnosis. Quantum algorithms can give exponential performance gains over their classical counterparts. In this paper, we implement a quantum clustering technique to classify the cells into different cancer types. To verify our implementation, we test it using the standard ‘gene expression cancer RNA-Seq’ dataset. The experimental results show that our algorithm achieves high accuracy of 94.8% (on average) in classifying the different types of cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信