K. Ahmad, Z. Saad, N. Abdullah, Z. Hussain, M. H. Mohd Noor
{"title":"基于自适应卡尔曼背景的动态背景下运动车辆分割方法","authors":"K. Ahmad, Z. Saad, N. Abdullah, Z. Hussain, M. H. Mohd Noor","doi":"10.1109/CSPA.2011.5759918","DOIUrl":null,"url":null,"abstract":"This paper introduce the adaptive kalman filter to modeling dynamic background for background subtraction. Background subtraction is a method to identify object and famous used in moving object segmentation. In this paper we also investigate a comparison study on Gaussian subtraction method, frame differencing method and approximate median method. The detection of object will be shown in the result.","PeriodicalId":282179,"journal":{"name":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Moving vehicle segmentation in a dynamic background using self-adaptive kalman background method\",\"authors\":\"K. Ahmad, Z. Saad, N. Abdullah, Z. Hussain, M. H. Mohd Noor\",\"doi\":\"10.1109/CSPA.2011.5759918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduce the adaptive kalman filter to modeling dynamic background for background subtraction. Background subtraction is a method to identify object and famous used in moving object segmentation. In this paper we also investigate a comparison study on Gaussian subtraction method, frame differencing method and approximate median method. The detection of object will be shown in the result.\",\"PeriodicalId\":282179,\"journal\":{\"name\":\"2011 IEEE 7th International Colloquium on Signal Processing and its Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 7th International Colloquium on Signal Processing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2011.5759918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2011.5759918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Moving vehicle segmentation in a dynamic background using self-adaptive kalman background method
This paper introduce the adaptive kalman filter to modeling dynamic background for background subtraction. Background subtraction is a method to identify object and famous used in moving object segmentation. In this paper we also investigate a comparison study on Gaussian subtraction method, frame differencing method and approximate median method. The detection of object will be shown in the result.