通过电路布置提高电桥故障可测性和IDDQ测试的置信度

N. Sharma, C. Ravikumar
{"title":"通过电路布置提高电桥故障可测性和IDDQ测试的置信度","authors":"N. Sharma, C. Ravikumar","doi":"10.1109/IDDQ.1996.557802","DOIUrl":null,"url":null,"abstract":"The layout of a circuit can influence the probability of occurrence of faults. In this paper, we develop algorithms that can take advantage of this fact to reduce the chances of hard-to-detect (HTD) faults from occurring. We primarily focus on line bridge faults in this paper. We define a bridge fault f as an HTD fault if an automatic test pattern generator fails to generate a test vector for f in a reasonable amount of CPU-time. It is common practice to drop such HTD faults from consideration during test generation. The chip fault coverage achieved by a test set is poor if the fault set consists of many HTD faults. We can combat this problem by avoiding altogether, or by reducing the probability of, the occurrence of HTD faults. In this paper, we consider hard-to-detect bridging faults and show how module placement rules can be derived to reduce the probability of these faults. A genetic placement algorithm that optimizes area while respecting these rules is presented. The placement algorithm has been implemented for standard-cell layout style on a SUN/SPARC and tested against several sample circuits.","PeriodicalId":285207,"journal":{"name":"Digest of Papers 1996 IEEE International Workshop on IDDQ Testing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving bridge-fault testability and confidence of IDDQ testing through circuit placement\",\"authors\":\"N. Sharma, C. Ravikumar\",\"doi\":\"10.1109/IDDQ.1996.557802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The layout of a circuit can influence the probability of occurrence of faults. In this paper, we develop algorithms that can take advantage of this fact to reduce the chances of hard-to-detect (HTD) faults from occurring. We primarily focus on line bridge faults in this paper. We define a bridge fault f as an HTD fault if an automatic test pattern generator fails to generate a test vector for f in a reasonable amount of CPU-time. It is common practice to drop such HTD faults from consideration during test generation. The chip fault coverage achieved by a test set is poor if the fault set consists of many HTD faults. We can combat this problem by avoiding altogether, or by reducing the probability of, the occurrence of HTD faults. In this paper, we consider hard-to-detect bridging faults and show how module placement rules can be derived to reduce the probability of these faults. A genetic placement algorithm that optimizes area while respecting these rules is presented. The placement algorithm has been implemented for standard-cell layout style on a SUN/SPARC and tested against several sample circuits.\",\"PeriodicalId\":285207,\"journal\":{\"name\":\"Digest of Papers 1996 IEEE International Workshop on IDDQ Testing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Papers 1996 IEEE International Workshop on IDDQ Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDDQ.1996.557802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Papers 1996 IEEE International Workshop on IDDQ Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDDQ.1996.557802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电路的布局会影响故障发生的概率。在本文中,我们开发了可以利用这一事实的算法,以减少发生难以检测(HTD)故障的机会。本文主要研究线路桥的故障。如果自动测试模式生成器未能在合理的cpu时间内为f生成测试向量,我们将桥接故障f定义为HTD故障。通常的做法是在测试生成过程中不考虑此类HTD故障。如果故障集由许多HTD故障组成,则测试集实现的芯片故障覆盖率很差。我们可以通过完全避免或减少HTD故障发生的概率来解决这个问题。在本文中,我们考虑了难以检测的桥接故障,并展示了如何推导模块放置规则来降低这些故障的概率。提出了一种在尊重这些规则的同时优化面积的遗传布局算法。在SUN/SPARC上实现了标准单元布局的布局算法,并对多个样本电路进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving bridge-fault testability and confidence of IDDQ testing through circuit placement
The layout of a circuit can influence the probability of occurrence of faults. In this paper, we develop algorithms that can take advantage of this fact to reduce the chances of hard-to-detect (HTD) faults from occurring. We primarily focus on line bridge faults in this paper. We define a bridge fault f as an HTD fault if an automatic test pattern generator fails to generate a test vector for f in a reasonable amount of CPU-time. It is common practice to drop such HTD faults from consideration during test generation. The chip fault coverage achieved by a test set is poor if the fault set consists of many HTD faults. We can combat this problem by avoiding altogether, or by reducing the probability of, the occurrence of HTD faults. In this paper, we consider hard-to-detect bridging faults and show how module placement rules can be derived to reduce the probability of these faults. A genetic placement algorithm that optimizes area while respecting these rules is presented. The placement algorithm has been implemented for standard-cell layout style on a SUN/SPARC and tested against several sample circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信