R. G. Shriwastava, Sonali Gosavi, S. Khule, S. Hadpe, Mohan P. Thakare
{"title":"一种新颖的PWM技术用于可再生能源逆变器中减少开关计数","authors":"R. G. Shriwastava, Sonali Gosavi, S. Khule, S. Hadpe, Mohan P. Thakare","doi":"10.11591/ijape.v12.i1.pp1-12","DOIUrl":null,"url":null,"abstract":"This paper described a novel pulse width modulation (PWM) technique in reduced switch count multilevel inverter (MLI) for renewable power applications. Therefore, the proposed technique finds a better solution in the multilevel inverters used for improving power quality, efficiency and reduction of switching and conduction losses. It produces a smoother sinusoidal output waveform with reduced total harmonic distortion (THD) using different modulation technique. The novel PWM technique consists of nearest level control (NLC) and level shift pulse width modulation (LSPWM). Normally semiconducting devices are added for increasing number of levels. It affects the power quality and efficiency due to losses. In this work, MLI topology with reduced number of switches count for NLC and LSPWM is presented. The single-phase and three-phase inverter configuration is used in proposed mythology. Detailed simulation results for 7-level inverter of single and three-phase inverters are presented in this paper. It is observed that NLC method is better efficiency and reduced THD than LSPWM for better utilization in renewable power applications.","PeriodicalId":340072,"journal":{"name":"International Journal of Applied Power Engineering (IJAPE)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel PWM technique for reduced switch count multilevel inverter in renewable power applications\",\"authors\":\"R. G. Shriwastava, Sonali Gosavi, S. Khule, S. Hadpe, Mohan P. Thakare\",\"doi\":\"10.11591/ijape.v12.i1.pp1-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper described a novel pulse width modulation (PWM) technique in reduced switch count multilevel inverter (MLI) for renewable power applications. Therefore, the proposed technique finds a better solution in the multilevel inverters used for improving power quality, efficiency and reduction of switching and conduction losses. It produces a smoother sinusoidal output waveform with reduced total harmonic distortion (THD) using different modulation technique. The novel PWM technique consists of nearest level control (NLC) and level shift pulse width modulation (LSPWM). Normally semiconducting devices are added for increasing number of levels. It affects the power quality and efficiency due to losses. In this work, MLI topology with reduced number of switches count for NLC and LSPWM is presented. The single-phase and three-phase inverter configuration is used in proposed mythology. Detailed simulation results for 7-level inverter of single and three-phase inverters are presented in this paper. It is observed that NLC method is better efficiency and reduced THD than LSPWM for better utilization in renewable power applications.\",\"PeriodicalId\":340072,\"journal\":{\"name\":\"International Journal of Applied Power Engineering (IJAPE)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Power Engineering (IJAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijape.v12.i1.pp1-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering (IJAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijape.v12.i1.pp1-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel PWM technique for reduced switch count multilevel inverter in renewable power applications
This paper described a novel pulse width modulation (PWM) technique in reduced switch count multilevel inverter (MLI) for renewable power applications. Therefore, the proposed technique finds a better solution in the multilevel inverters used for improving power quality, efficiency and reduction of switching and conduction losses. It produces a smoother sinusoidal output waveform with reduced total harmonic distortion (THD) using different modulation technique. The novel PWM technique consists of nearest level control (NLC) and level shift pulse width modulation (LSPWM). Normally semiconducting devices are added for increasing number of levels. It affects the power quality and efficiency due to losses. In this work, MLI topology with reduced number of switches count for NLC and LSPWM is presented. The single-phase and three-phase inverter configuration is used in proposed mythology. Detailed simulation results for 7-level inverter of single and three-phase inverters are presented in this paper. It is observed that NLC method is better efficiency and reduced THD than LSPWM for better utilization in renewable power applications.