利用无约束监督改进ASR的LF-MMI

Hossein Hadian, Daniel Povey, H. Sameti, J. Trmal, S. Khudanpur
{"title":"利用无约束监督改进ASR的LF-MMI","authors":"Hossein Hadian, Daniel Povey, H. Sameti, J. Trmal, S. Khudanpur","doi":"10.1109/SLT.2018.8639684","DOIUrl":null,"url":null,"abstract":"We present our work on improving the numerator graph for discriminative training using the lattice-free maximum mutual information (MMI) criterion. Specifically, we propose a scheme for creating unconstrained numerator graphs by removing time constraints from the baseline numerator graphs. This leads to much smaller graphs and therefore faster preparation of training supervisions. By testing the proposed un-constrained supervisions using factorized time-delay neural network (TDNN) models, we observe 0.5% to 2.6% relative improvement over the state-of-the-art word error rates on various large-vocabulary speech recognition databases.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Improving LF-MMI Using Unconstrained Supervisions for ASR\",\"authors\":\"Hossein Hadian, Daniel Povey, H. Sameti, J. Trmal, S. Khudanpur\",\"doi\":\"10.1109/SLT.2018.8639684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our work on improving the numerator graph for discriminative training using the lattice-free maximum mutual information (MMI) criterion. Specifically, we propose a scheme for creating unconstrained numerator graphs by removing time constraints from the baseline numerator graphs. This leads to much smaller graphs and therefore faster preparation of training supervisions. By testing the proposed un-constrained supervisions using factorized time-delay neural network (TDNN) models, we observe 0.5% to 2.6% relative improvement over the state-of-the-art word error rates on various large-vocabulary speech recognition databases.\",\"PeriodicalId\":377307,\"journal\":{\"name\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2018.8639684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文介绍了利用无格最大互信息(MMI)准则改进分子图判别训练的工作。具体来说,我们提出了一种通过从基线分子图中去除时间约束来创建无约束分子图的方案。这将导致更小的图,从而更快地准备训练监督。通过使用分解时滞神经网络(TDNN)模型测试提出的无约束监督,我们观察到在各种大词汇量语音识别数据库上,相对于最先进的单词错误率提高了0.5%至2.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving LF-MMI Using Unconstrained Supervisions for ASR
We present our work on improving the numerator graph for discriminative training using the lattice-free maximum mutual information (MMI) criterion. Specifically, we propose a scheme for creating unconstrained numerator graphs by removing time constraints from the baseline numerator graphs. This leads to much smaller graphs and therefore faster preparation of training supervisions. By testing the proposed un-constrained supervisions using factorized time-delay neural network (TDNN) models, we observe 0.5% to 2.6% relative improvement over the state-of-the-art word error rates on various large-vocabulary speech recognition databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信