利用机器学习和可视化对大数据进行定性归纳分析

H. Muthukrishnan, D. Szafir
{"title":"利用机器学习和可视化对大数据进行定性归纳分析","authors":"H. Muthukrishnan, D. Szafir","doi":"10.1109/MLUI52769.2019.10075566","DOIUrl":null,"url":null,"abstract":"Many domains require analyst expertise to determine what patterns and data are interesting in a corpus. However, most analytics tools attempt to prequalify “interestingness” using algorithmic approaches to provide exploratory overviews. This overview-driven workflow precludes the use of qualitative analysis methodologies in large datasets. This paper discusses a preliminary visual analytics approach demonstrating how visual analytics tools can instead enable expert-driven qualitative analyses at scale by supporting computer-in-the-loop mixed initiative approaches. We argue that visual analytics tools can support rich qualitative inference by using machine learning methods to continually model and refine what features correlate to an analyst’s on-going qualitative observations and by providing transparency into these features in order to aid analysts in navigating large corpora during qualitative analyses. We illustrate these ideas through an example from social media analysis and discuss open opportunities for designing visualizations that support qualitative inference through computer-in-the-loop approaches.","PeriodicalId":297242,"journal":{"name":"2019 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning and Visualization for Qualitative Inductive Analyses of Big Data\",\"authors\":\"H. Muthukrishnan, D. Szafir\",\"doi\":\"10.1109/MLUI52769.2019.10075566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many domains require analyst expertise to determine what patterns and data are interesting in a corpus. However, most analytics tools attempt to prequalify “interestingness” using algorithmic approaches to provide exploratory overviews. This overview-driven workflow precludes the use of qualitative analysis methodologies in large datasets. This paper discusses a preliminary visual analytics approach demonstrating how visual analytics tools can instead enable expert-driven qualitative analyses at scale by supporting computer-in-the-loop mixed initiative approaches. We argue that visual analytics tools can support rich qualitative inference by using machine learning methods to continually model and refine what features correlate to an analyst’s on-going qualitative observations and by providing transparency into these features in order to aid analysts in navigating large corpora during qualitative analyses. We illustrate these ideas through an example from social media analysis and discuss open opportunities for designing visualizations that support qualitative inference through computer-in-the-loop approaches.\",\"PeriodicalId\":297242,\"journal\":{\"name\":\"2019 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLUI52769.2019.10075566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLUI52769.2019.10075566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多领域需要分析师的专业知识来确定语料库中感兴趣的模式和数据。然而,大多数分析工具都试图使用算法方法来预先限定“趣味性”,以提供探索性概述。这种概述驱动的工作流程排除了在大型数据集中使用定性分析方法。本文讨论了一种初步的可视化分析方法,展示了可视化分析工具如何通过支持计算机在循环中的混合主动方法来实现大规模的专家驱动的定性分析。我们认为,可视化分析工具可以通过使用机器学习方法来持续建模和改进与分析师正在进行的定性观察相关的特征,并通过提供这些特征的透明度来支持丰富的定性推断,从而帮助分析师在定性分析期间导航大型语料库。我们通过一个来自社交媒体分析的例子来说明这些想法,并讨论了通过计算机在环方法来支持定性推理的可视化设计的开放机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Machine Learning and Visualization for Qualitative Inductive Analyses of Big Data
Many domains require analyst expertise to determine what patterns and data are interesting in a corpus. However, most analytics tools attempt to prequalify “interestingness” using algorithmic approaches to provide exploratory overviews. This overview-driven workflow precludes the use of qualitative analysis methodologies in large datasets. This paper discusses a preliminary visual analytics approach demonstrating how visual analytics tools can instead enable expert-driven qualitative analyses at scale by supporting computer-in-the-loop mixed initiative approaches. We argue that visual analytics tools can support rich qualitative inference by using machine learning methods to continually model and refine what features correlate to an analyst’s on-going qualitative observations and by providing transparency into these features in order to aid analysts in navigating large corpora during qualitative analyses. We illustrate these ideas through an example from social media analysis and discuss open opportunities for designing visualizations that support qualitative inference through computer-in-the-loop approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信