SolSaviour:部署有缺陷智能合约的防御框架

Zecheng Li, Yu Zhou, Songtao Guo, Bin Xiao
{"title":"SolSaviour:部署有缺陷智能合约的防御框架","authors":"Zecheng Li, Yu Zhou, Songtao Guo, Bin Xiao","doi":"10.1145/3485832.3488015","DOIUrl":null,"url":null,"abstract":"A smart contract cannot be modified once deployed. Bugs in deployed smart contracts may cause devastating consequences. For example, the infamous reentrancy bug in the DAO contract allows attackers to arbitrarily withdraw ethers, which caused millions of dollars loss. Currently, the main countermeasure against contract bugs is to thoroughly detect and verify contracts before deployment, which, however, cannot defend against unknown bugs. These detection methods also suffer from possible false negative results. In this paper, we propose SolSaviour, a framework for repairing and recovering deployed defective smart contracts by redeploying patched contracts and migrating old contracts’ internal states to the new ones. SolSaviour consists of a voteDestruct mechanism and a TEE cluster. The voteDestruct mechanism allows contract stake holders to decide whether to destroy the defective contract and withdraw inside assets. The TEE cluster is responsible for asset escrow, redeployment of patched contracts, and state migration. Our experiment results show that SolSaviour can successfully repair vulnerabilities, reduce asset losses, and recover all defective contracts. To the best of our knowledge, we are the first to propose a defending mechanism for repairing and recovering deployed defective smart contracts.","PeriodicalId":175869,"journal":{"name":"Annual Computer Security Applications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"SolSaviour: A Defending Framework for Deployed Defective Smart Contracts\",\"authors\":\"Zecheng Li, Yu Zhou, Songtao Guo, Bin Xiao\",\"doi\":\"10.1145/3485832.3488015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A smart contract cannot be modified once deployed. Bugs in deployed smart contracts may cause devastating consequences. For example, the infamous reentrancy bug in the DAO contract allows attackers to arbitrarily withdraw ethers, which caused millions of dollars loss. Currently, the main countermeasure against contract bugs is to thoroughly detect and verify contracts before deployment, which, however, cannot defend against unknown bugs. These detection methods also suffer from possible false negative results. In this paper, we propose SolSaviour, a framework for repairing and recovering deployed defective smart contracts by redeploying patched contracts and migrating old contracts’ internal states to the new ones. SolSaviour consists of a voteDestruct mechanism and a TEE cluster. The voteDestruct mechanism allows contract stake holders to decide whether to destroy the defective contract and withdraw inside assets. The TEE cluster is responsible for asset escrow, redeployment of patched contracts, and state migration. Our experiment results show that SolSaviour can successfully repair vulnerabilities, reduce asset losses, and recover all defective contracts. To the best of our knowledge, we are the first to propose a defending mechanism for repairing and recovering deployed defective smart contracts.\",\"PeriodicalId\":175869,\"journal\":{\"name\":\"Annual Computer Security Applications Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Computer Security Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485832.3488015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485832.3488015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

智能合约一旦部署就不能修改。部署的智能合约中的漏洞可能会导致毁灭性的后果。例如,DAO合约中臭名昭著的重入漏洞允许攻击者任意提取以太币,造成数百万美元的损失。目前,针对合约bug的主要对策是在部署之前彻底检测和验证合约,但这并不能抵御未知的bug。这些检测方法也可能出现假阴性结果。在本文中,我们提出了SolSaviour,这是一个通过重新部署修补过的合约并将旧合约的内部状态迁移到新合约来修复和恢复已部署的有缺陷的智能合约的框架。SolSaviour由一个voteDestruct机制和一个TEE集群组成。voteDestruct机制允许合同利益相关者决定是否销毁有缺陷的合同并撤回内部资产。TEE集群负责资产托管、补丁契约的重新部署和状态迁移。实验结果表明,SolSaviour可以成功修复漏洞,减少资产损失,并恢复所有有缺陷的合同。据我们所知,我们是第一个提出修复和恢复部署的有缺陷的智能合约的防御机制的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SolSaviour: A Defending Framework for Deployed Defective Smart Contracts
A smart contract cannot be modified once deployed. Bugs in deployed smart contracts may cause devastating consequences. For example, the infamous reentrancy bug in the DAO contract allows attackers to arbitrarily withdraw ethers, which caused millions of dollars loss. Currently, the main countermeasure against contract bugs is to thoroughly detect and verify contracts before deployment, which, however, cannot defend against unknown bugs. These detection methods also suffer from possible false negative results. In this paper, we propose SolSaviour, a framework for repairing and recovering deployed defective smart contracts by redeploying patched contracts and migrating old contracts’ internal states to the new ones. SolSaviour consists of a voteDestruct mechanism and a TEE cluster. The voteDestruct mechanism allows contract stake holders to decide whether to destroy the defective contract and withdraw inside assets. The TEE cluster is responsible for asset escrow, redeployment of patched contracts, and state migration. Our experiment results show that SolSaviour can successfully repair vulnerabilities, reduce asset losses, and recover all defective contracts. To the best of our knowledge, we are the first to propose a defending mechanism for repairing and recovering deployed defective smart contracts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信