改进的基于adaboost的WiFi室内定位指纹算法

Yu-Siang Feng, Minghua Jiang, Liang Jing, Qin Xiao, Hu Ming, Peng Tao, Xinrong Hu
{"title":"改进的基于adaboost的WiFi室内定位指纹算法","authors":"Yu-Siang Feng, Minghua Jiang, Liang Jing, Qin Xiao, Hu Ming, Peng Tao, Xinrong Hu","doi":"10.1109/ITAIC.2014.7064997","DOIUrl":null,"url":null,"abstract":"Indoor localization have received increasing attention for location-based severs in indoor environment. In this paper, we propose an indoor localization technique based on improved AdaBoost algorithm. The accuracy of AdaBoost depends on the weak hypothesis form all the weak learning, if there is noise in the fingerprint map, the performance of AdaBoost will decline. Because of the variability of indoor environment, the noise can not be avoided. So the improved AdaBoost is proposed to ignore the individual unfocused points to develop the localization accuracy. Experimental results indicate that the proposed algorithm achieves high localization accuracy.","PeriodicalId":111584,"journal":{"name":"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Improved AdaBoost-based fingerprint algorithm for WiFi indoor localization\",\"authors\":\"Yu-Siang Feng, Minghua Jiang, Liang Jing, Qin Xiao, Hu Ming, Peng Tao, Xinrong Hu\",\"doi\":\"10.1109/ITAIC.2014.7064997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor localization have received increasing attention for location-based severs in indoor environment. In this paper, we propose an indoor localization technique based on improved AdaBoost algorithm. The accuracy of AdaBoost depends on the weak hypothesis form all the weak learning, if there is noise in the fingerprint map, the performance of AdaBoost will decline. Because of the variability of indoor environment, the noise can not be avoided. So the improved AdaBoost is proposed to ignore the individual unfocused points to develop the localization accuracy. Experimental results indicate that the proposed algorithm achieves high localization accuracy.\",\"PeriodicalId\":111584,\"journal\":{\"name\":\"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITAIC.2014.7064997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAIC.2014.7064997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于位置的服务器在室内环境中的定位越来越受到人们的关注。本文提出了一种基于改进AdaBoost算法的室内定位技术。AdaBoost的准确性依赖于所有弱学习的弱假设,如果指纹图谱中存在噪声,AdaBoost的性能会下降。由于室内环境的多变性,噪声是无法避免的。为了提高定位精度,提出了改进的AdaBoost算法来忽略单个不聚焦点。实验结果表明,该算法具有较高的定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved AdaBoost-based fingerprint algorithm for WiFi indoor localization
Indoor localization have received increasing attention for location-based severs in indoor environment. In this paper, we propose an indoor localization technique based on improved AdaBoost algorithm. The accuracy of AdaBoost depends on the weak hypothesis form all the weak learning, if there is noise in the fingerprint map, the performance of AdaBoost will decline. Because of the variability of indoor environment, the noise can not be avoided. So the improved AdaBoost is proposed to ignore the individual unfocused points to develop the localization accuracy. Experimental results indicate that the proposed algorithm achieves high localization accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信