光谱直方图模型二值化:在高效生物特征识别中的应用

A. Pflug, C. Rathgeb, U. Scherhag, C. Busch
{"title":"光谱直方图模型二值化:在高效生物特征识别中的应用","authors":"A. Pflug, C. Rathgeb, U. Scherhag, C. Busch","doi":"10.1109/CYBConf.2015.7175985","DOIUrl":null,"url":null,"abstract":"Feature extraction techniques such as local binary patterns (LBP) or binarized statistical image features (BSIF) are crucial components in a biometric recognition system. The vast majority of relevant approaches employs spectral histograms as feature representation, i.e. extracted biometric reference data consists of sequences of histograms. Transforming these histogram sequences to a binary representation in an accuracy-preserving manner would offer major advantages w.r.t. data storage and efficient comparison. We propose a generic binarization for spectral histogram models in conjunction with a Hamming distance-based comparator. The proposed binarization and comparison technique enables a compact storage and a fast comparison of biometric features at a negligible cost of biometric performance (accuracy). Further, we investigate a serial combination of the binary comparator and histogram model-based comparator in a biometric identification system. Experiments are carried out for two emerging biometric characteristics, i.e. palmprint and ear, confirming the soundness of the presented technique.","PeriodicalId":177233,"journal":{"name":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Binarization of spectral histogram models: An application to efficient biometric identification\",\"authors\":\"A. Pflug, C. Rathgeb, U. Scherhag, C. Busch\",\"doi\":\"10.1109/CYBConf.2015.7175985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature extraction techniques such as local binary patterns (LBP) or binarized statistical image features (BSIF) are crucial components in a biometric recognition system. The vast majority of relevant approaches employs spectral histograms as feature representation, i.e. extracted biometric reference data consists of sequences of histograms. Transforming these histogram sequences to a binary representation in an accuracy-preserving manner would offer major advantages w.r.t. data storage and efficient comparison. We propose a generic binarization for spectral histogram models in conjunction with a Hamming distance-based comparator. The proposed binarization and comparison technique enables a compact storage and a fast comparison of biometric features at a negligible cost of biometric performance (accuracy). Further, we investigate a serial combination of the binary comparator and histogram model-based comparator in a biometric identification system. Experiments are carried out for two emerging biometric characteristics, i.e. palmprint and ear, confirming the soundness of the presented technique.\",\"PeriodicalId\":177233,\"journal\":{\"name\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBConf.2015.7175985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBConf.2015.7175985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

局部二值模式(LBP)或二值化统计图像特征(BSIF)等特征提取技术是生物特征识别系统的重要组成部分。绝大多数相关方法采用光谱直方图作为特征表示,即提取的生物特征参考数据由直方图序列组成。以一种保持精度的方式将这些直方图序列转换为二值表示将提供w.r.t.数据存储和有效比较的主要优势。我们提出了光谱直方图模型的一般二值化与汉明距离为基础的比较器。所提出的二值化和比较技术使生物特征的紧凑存储和快速比较在生物特征性能(精度)的可忽略不计的成本。此外,我们研究了在生物识别系统中二进制比较器和基于直方图模型的比较器的串行组合。实验对两种新兴的生物特征,即掌纹和耳朵进行了验证,证实了所提出技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binarization of spectral histogram models: An application to efficient biometric identification
Feature extraction techniques such as local binary patterns (LBP) or binarized statistical image features (BSIF) are crucial components in a biometric recognition system. The vast majority of relevant approaches employs spectral histograms as feature representation, i.e. extracted biometric reference data consists of sequences of histograms. Transforming these histogram sequences to a binary representation in an accuracy-preserving manner would offer major advantages w.r.t. data storage and efficient comparison. We propose a generic binarization for spectral histogram models in conjunction with a Hamming distance-based comparator. The proposed binarization and comparison technique enables a compact storage and a fast comparison of biometric features at a negligible cost of biometric performance (accuracy). Further, we investigate a serial combination of the binary comparator and histogram model-based comparator in a biometric identification system. Experiments are carried out for two emerging biometric characteristics, i.e. palmprint and ear, confirming the soundness of the presented technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信