{"title":"改进的神经拟合Q迭代应用于一种新的计算机游戏和学习基准","authors":"T. Gabel, C. Lutz, Martin A. Riedmiller","doi":"10.1109/ADPRL.2011.5967361","DOIUrl":null,"url":null,"abstract":"Neural batch reinforcement learning (RL) algorithms have recently shown to be a powerful tool for model-free reinforcement learning problems. In this paper, we present a novel learning benchmark from the realm of computer games and apply a variant of a neural batch RL algorithm in the scope of this benchmark. Defining the learning problem and appropriately adjusting all relevant parameters is often a tedious task for the researcher who implements and investigates some learning approach. In RL, the suitable choice of the function c of immediate costs is crucial, and, when utilizing multi-layer perceptron neural networks for the purpose of value function approximation, the definition of c must be well aligned with the specific characteristics of this type of function approximator. Determining this alignment is especially tricky, when no a priori knowledge about the task and, hence, about optimal policies is available. To this end, we propose a simple, but effective dynamic scaling heuristic that can be seamlessly integrated into contemporary neural batch RL algorithms. We evaluate the effectiveness of this heuristic in the context of the well-known pole swing-up benchmark as well as in the context of the novel gaming benchmark we are suggesting.","PeriodicalId":406195,"journal":{"name":"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)","volume":"473 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Improved neural fitted Q iteration applied to a novel computer gaming and learning benchmark\",\"authors\":\"T. Gabel, C. Lutz, Martin A. Riedmiller\",\"doi\":\"10.1109/ADPRL.2011.5967361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural batch reinforcement learning (RL) algorithms have recently shown to be a powerful tool for model-free reinforcement learning problems. In this paper, we present a novel learning benchmark from the realm of computer games and apply a variant of a neural batch RL algorithm in the scope of this benchmark. Defining the learning problem and appropriately adjusting all relevant parameters is often a tedious task for the researcher who implements and investigates some learning approach. In RL, the suitable choice of the function c of immediate costs is crucial, and, when utilizing multi-layer perceptron neural networks for the purpose of value function approximation, the definition of c must be well aligned with the specific characteristics of this type of function approximator. Determining this alignment is especially tricky, when no a priori knowledge about the task and, hence, about optimal policies is available. To this end, we propose a simple, but effective dynamic scaling heuristic that can be seamlessly integrated into contemporary neural batch RL algorithms. We evaluate the effectiveness of this heuristic in the context of the well-known pole swing-up benchmark as well as in the context of the novel gaming benchmark we are suggesting.\",\"PeriodicalId\":406195,\"journal\":{\"name\":\"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)\",\"volume\":\"473 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ADPRL.2011.5967361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADPRL.2011.5967361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved neural fitted Q iteration applied to a novel computer gaming and learning benchmark
Neural batch reinforcement learning (RL) algorithms have recently shown to be a powerful tool for model-free reinforcement learning problems. In this paper, we present a novel learning benchmark from the realm of computer games and apply a variant of a neural batch RL algorithm in the scope of this benchmark. Defining the learning problem and appropriately adjusting all relevant parameters is often a tedious task for the researcher who implements and investigates some learning approach. In RL, the suitable choice of the function c of immediate costs is crucial, and, when utilizing multi-layer perceptron neural networks for the purpose of value function approximation, the definition of c must be well aligned with the specific characteristics of this type of function approximator. Determining this alignment is especially tricky, when no a priori knowledge about the task and, hence, about optimal policies is available. To this end, we propose a simple, but effective dynamic scaling heuristic that can be seamlessly integrated into contemporary neural batch RL algorithms. We evaluate the effectiveness of this heuristic in the context of the well-known pole swing-up benchmark as well as in the context of the novel gaming benchmark we are suggesting.