分布式学习方法下的风速预报

H. Allende-Cid, H. Allende, R. Monge, C. Moraga
{"title":"分布式学习方法下的风速预报","authors":"H. Allende-Cid, H. Allende, R. Monge, C. Moraga","doi":"10.1109/SCCC.2013.24","DOIUrl":null,"url":null,"abstract":"In this paper we apply a distributed learning approach to improve the perfomance of wind speed forecast. We use data obtained from 54 different weather stations in the U. S. and without sharing data between sites, we share model information between them, to improve the performance over local models trained with only local data. We show that sharing the information of the distributed models, improves the forecast we could obtain by only using locally trained models.","PeriodicalId":182181,"journal":{"name":"2013 32nd International Conference of the Chilean Computer Science Society (SCCC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wind Speed Forecast under a Distributed Learning Approach\",\"authors\":\"H. Allende-Cid, H. Allende, R. Monge, C. Moraga\",\"doi\":\"10.1109/SCCC.2013.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we apply a distributed learning approach to improve the perfomance of wind speed forecast. We use data obtained from 54 different weather stations in the U. S. and without sharing data between sites, we share model information between them, to improve the performance over local models trained with only local data. We show that sharing the information of the distributed models, improves the forecast we could obtain by only using locally trained models.\",\"PeriodicalId\":182181,\"journal\":{\"name\":\"2013 32nd International Conference of the Chilean Computer Science Society (SCCC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 32nd International Conference of the Chilean Computer Science Society (SCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCC.2013.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 32nd International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2013.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用分布式学习方法来提高风速预报的性能。我们使用从美国54个不同气象站获得的数据,没有在站点之间共享数据,我们在它们之间共享模型信息,以提高仅使用本地数据训练的本地模型的性能。结果表明,共享分布式模型的信息,可以提高仅使用局部训练模型所能获得的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wind Speed Forecast under a Distributed Learning Approach
In this paper we apply a distributed learning approach to improve the perfomance of wind speed forecast. We use data obtained from 54 different weather stations in the U. S. and without sharing data between sites, we share model information between them, to improve the performance over local models trained with only local data. We show that sharing the information of the distributed models, improves the forecast we could obtain by only using locally trained models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信