基于相似性的动态网络建模压缩比

Günce Keziban Orman, Serhat Çolak
{"title":"基于相似性的动态网络建模压缩比","authors":"Günce Keziban Orman, Serhat Çolak","doi":"10.1109/EUROCON52738.2021.9535635","DOIUrl":null,"url":null,"abstract":"Dynamic network modelling of timely evolving complex systems allows to discover emerging properties of realworld facts. The main issue of such modelling is determining the proper time intervals, a.k.a. window size, for each member of network. In this work, we propose a new network similarity based compression ratio for measuring the properness of studied window size. Besides, we show that a more informative dynamic network with a less noisier structure can be extracted by using a window aggregation strategy. The results on Enron, Haggle Infocom and Reality Mining data sets reveal that the proposed compression ratio is more effective for finding best window size than baseline and aggregation strategy allows to capture important time-dependent events which might be hidden in noise when using constant windows.","PeriodicalId":328338,"journal":{"name":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity Based Compression Ratio for Dynamic Network Modelling\",\"authors\":\"Günce Keziban Orman, Serhat Çolak\",\"doi\":\"10.1109/EUROCON52738.2021.9535635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic network modelling of timely evolving complex systems allows to discover emerging properties of realworld facts. The main issue of such modelling is determining the proper time intervals, a.k.a. window size, for each member of network. In this work, we propose a new network similarity based compression ratio for measuring the properness of studied window size. Besides, we show that a more informative dynamic network with a less noisier structure can be extracted by using a window aggregation strategy. The results on Enron, Haggle Infocom and Reality Mining data sets reveal that the proposed compression ratio is more effective for finding best window size than baseline and aggregation strategy allows to capture important time-dependent events which might be hidden in noise when using constant windows.\",\"PeriodicalId\":328338,\"journal\":{\"name\":\"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON52738.2021.9535635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON52738.2021.9535635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

及时发展的复杂系统的动态网络建模允许发现现实世界事实的新特性。这种建模的主要问题是为网络的每个成员确定适当的时间间隔,也就是窗口大小。在这项工作中,我们提出了一种新的基于网络相似度的压缩比来衡量研究窗口大小的适当性。此外,我们还证明了使用窗口聚合策略可以提取具有更少噪声结构的更信息的动态网络。安然、Haggle Infocom和Reality Mining数据集的结果表明,所提出的压缩比在寻找最佳窗口大小方面比基线更有效,并且聚合策略允许捕获重要的时间相关事件,这些事件在使用恒定窗口时可能隐藏在噪声中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity Based Compression Ratio for Dynamic Network Modelling
Dynamic network modelling of timely evolving complex systems allows to discover emerging properties of realworld facts. The main issue of such modelling is determining the proper time intervals, a.k.a. window size, for each member of network. In this work, we propose a new network similarity based compression ratio for measuring the properness of studied window size. Besides, we show that a more informative dynamic network with a less noisier structure can be extracted by using a window aggregation strategy. The results on Enron, Haggle Infocom and Reality Mining data sets reveal that the proposed compression ratio is more effective for finding best window size than baseline and aggregation strategy allows to capture important time-dependent events which might be hidden in noise when using constant windows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信