电器消费特征开关状态的分类

Emir Salihagić, Jasmin Kevric, Nejdet Dogru
{"title":"电器消费特征开关状态的分类","authors":"Emir Salihagić, Jasmin Kevric, Nejdet Dogru","doi":"10.1109/BIHTEL.2016.7775722","DOIUrl":null,"url":null,"abstract":"Nonintrusive load monitoring (NILM) is a procedure for the analysis of the changes in the power (current and voltage) that goes into households and classifying the appliances used in the house according to their individual energy consumption. Utility companies use smart electric meters accompanied with NILM to examine the particular uses of electric power in households. Focus of this paper is on the analysis of the “ACS-F2 Database of Appliance Consumption Signatures”. The challenge lies in predicting the states of the electrical devices based on the measuring data which had been previously stored. Machine learning techniques have demonstrated to be effective in classification and pattern recognition tasks. In this paper, different algorithms implemented in the WEKA software are going to be used for the classification.","PeriodicalId":156236,"journal":{"name":"2016 XI International Symposium on Telecommunications (BIHTEL)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Classification of ON-OFF states of appliance consumption signatures\",\"authors\":\"Emir Salihagić, Jasmin Kevric, Nejdet Dogru\",\"doi\":\"10.1109/BIHTEL.2016.7775722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonintrusive load monitoring (NILM) is a procedure for the analysis of the changes in the power (current and voltage) that goes into households and classifying the appliances used in the house according to their individual energy consumption. Utility companies use smart electric meters accompanied with NILM to examine the particular uses of electric power in households. Focus of this paper is on the analysis of the “ACS-F2 Database of Appliance Consumption Signatures”. The challenge lies in predicting the states of the electrical devices based on the measuring data which had been previously stored. Machine learning techniques have demonstrated to be effective in classification and pattern recognition tasks. In this paper, different algorithms implemented in the WEKA software are going to be used for the classification.\",\"PeriodicalId\":156236,\"journal\":{\"name\":\"2016 XI International Symposium on Telecommunications (BIHTEL)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 XI International Symposium on Telecommunications (BIHTEL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIHTEL.2016.7775722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 XI International Symposium on Telecommunications (BIHTEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIHTEL.2016.7775722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

非侵入式负荷监测(NILM)是一种分析进入家庭的电力(电流和电压)变化的程序,并根据其个人能耗对家中使用的电器进行分类。公用事业公司使用智能电表和NILM来检查家庭电力的特定用途。本文的重点是对“ACS-F2家电消费特征数据库”的分析。挑战在于基于先前存储的测量数据来预测电气设备的状态。机器学习技术已被证明在分类和模式识别任务中是有效的。本文将使用WEKA软件中实现的不同算法进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of ON-OFF states of appliance consumption signatures
Nonintrusive load monitoring (NILM) is a procedure for the analysis of the changes in the power (current and voltage) that goes into households and classifying the appliances used in the house according to their individual energy consumption. Utility companies use smart electric meters accompanied with NILM to examine the particular uses of electric power in households. Focus of this paper is on the analysis of the “ACS-F2 Database of Appliance Consumption Signatures”. The challenge lies in predicting the states of the electrical devices based on the measuring data which had been previously stored. Machine learning techniques have demonstrated to be effective in classification and pattern recognition tasks. In this paper, different algorithms implemented in the WEKA software are going to be used for the classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信