基于低采样全息图的深度学习辅助全息图计算

T. Shimobaba, David Blinder, P. Schelkens, Yota Yamamoto, I. Hoshi, T. Kakue, T. Ito
{"title":"基于低采样全息图的深度学习辅助全息图计算","authors":"T. Shimobaba, David Blinder, P. Schelkens, Yota Yamamoto, I. Hoshi, T. Kakue, T. Ito","doi":"10.1109/IIAI-AAI.2019.00188","DOIUrl":null,"url":null,"abstract":"Digital holograms can be calculated by simulating light wave propagation on a computer. Hologram calculations are used for three-dimensional displays. However, the calculations take a long time, and the data size of the calculated holograms becomes large. This study presents a deep-learning-assisted hologram calculation using low-sampling holograms. We calculate holograms with low-sampling rates, resulting in the acceleration of the hologram calculation and the decrease of the hologram size. However, the low-sampling holograms decrease the quality of the reconstructed images and will occur the aliasing errors when not satisfying the Nyquist rate. The proposed method uses a deep neural network to retrieve the full-sampling holograms from the low-sampling holograms. We show elementary results of the proposed method in numerical simulation.","PeriodicalId":136474,"journal":{"name":"2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep-learning-assisted Hologram Calculation via Low-Sampling Holograms\",\"authors\":\"T. Shimobaba, David Blinder, P. Schelkens, Yota Yamamoto, I. Hoshi, T. Kakue, T. Ito\",\"doi\":\"10.1109/IIAI-AAI.2019.00188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital holograms can be calculated by simulating light wave propagation on a computer. Hologram calculations are used for three-dimensional displays. However, the calculations take a long time, and the data size of the calculated holograms becomes large. This study presents a deep-learning-assisted hologram calculation using low-sampling holograms. We calculate holograms with low-sampling rates, resulting in the acceleration of the hologram calculation and the decrease of the hologram size. However, the low-sampling holograms decrease the quality of the reconstructed images and will occur the aliasing errors when not satisfying the Nyquist rate. The proposed method uses a deep neural network to retrieve the full-sampling holograms from the low-sampling holograms. We show elementary results of the proposed method in numerical simulation.\",\"PeriodicalId\":136474,\"journal\":{\"name\":\"2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAI-AAI.2019.00188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2019.00188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过在计算机上模拟光波的传播,可以计算出数字全息图。全息图计算用于三维显示。但是,计算时间长,计算出的全息图数据量大。本研究提出了一种基于低采样全息图的深度学习辅助全息图计算方法。我们采用低采样率计算全息图,从而加快了全息图的计算速度,减小了全息图的尺寸。然而,低采样全息图在不满足奈奎斯特率时,会降低重建图像的质量,并产生混叠误差。该方法利用深度神经网络从低采样全息图中提取全采样全息图。在数值模拟中给出了该方法的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-learning-assisted Hologram Calculation via Low-Sampling Holograms
Digital holograms can be calculated by simulating light wave propagation on a computer. Hologram calculations are used for three-dimensional displays. However, the calculations take a long time, and the data size of the calculated holograms becomes large. This study presents a deep-learning-assisted hologram calculation using low-sampling holograms. We calculate holograms with low-sampling rates, resulting in the acceleration of the hologram calculation and the decrease of the hologram size. However, the low-sampling holograms decrease the quality of the reconstructed images and will occur the aliasing errors when not satisfying the Nyquist rate. The proposed method uses a deep neural network to retrieve the full-sampling holograms from the low-sampling holograms. We show elementary results of the proposed method in numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信