基于神经网络的聚氯乙烯辐射门户监测仪放射性同位素识别

J. Fombellida, L. F. Blázquez, F. Aller, S. Vrublevskaya, E. Valtuille
{"title":"基于神经网络的聚氯乙烯辐射门户监测仪放射性同位素识别","authors":"J. Fombellida, L. F. Blázquez, F. Aller, S. Vrublevskaya, E. Valtuille","doi":"10.1109/MED.2014.6961521","DOIUrl":null,"url":null,"abstract":"Radiation portal monitors (RPMs) are an effective mean of detecting radioactive material inside cargo containers. Polyvinyl toluene (PVT) monitors are the most broadly extended mainly due to their cost. The drawback when compared to other detectors is the lower resolution of the measured energy spectra. This low resolution hinders the use of spectrometric analysis to discriminate isotopes and discard nuisance alarms. Every alarm must thus be checked in a second inspection by a handheld detector or a spectroscopy-based radiation portal. The cost of this secondary inspection in terms of throughput can be significant, specially at maritime ports and borders. This paper aim is to assess the ability of neural networks to discriminate radioactive isotopes from the energy spectrum as measured by PVT RPMs. For this purpose, the system proposed preprocesses these energy spectra, dividing them by specific zones and transforming them into information. In a second step, this information is used by the neural network architecture, which allows to classify the radioisotopes in different groups.","PeriodicalId":127957,"journal":{"name":"22nd Mediterranean Conference on Control and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neural network based radioisotope discrimination on polyvinyl toluene radiation portal monitors\",\"authors\":\"J. Fombellida, L. F. Blázquez, F. Aller, S. Vrublevskaya, E. Valtuille\",\"doi\":\"10.1109/MED.2014.6961521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiation portal monitors (RPMs) are an effective mean of detecting radioactive material inside cargo containers. Polyvinyl toluene (PVT) monitors are the most broadly extended mainly due to their cost. The drawback when compared to other detectors is the lower resolution of the measured energy spectra. This low resolution hinders the use of spectrometric analysis to discriminate isotopes and discard nuisance alarms. Every alarm must thus be checked in a second inspection by a handheld detector or a spectroscopy-based radiation portal. The cost of this secondary inspection in terms of throughput can be significant, specially at maritime ports and borders. This paper aim is to assess the ability of neural networks to discriminate radioactive isotopes from the energy spectrum as measured by PVT RPMs. For this purpose, the system proposed preprocesses these energy spectra, dividing them by specific zones and transforming them into information. In a second step, this information is used by the neural network architecture, which allows to classify the radioisotopes in different groups.\",\"PeriodicalId\":127957,\"journal\":{\"name\":\"22nd Mediterranean Conference on Control and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2014.6961521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2014.6961521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

辐射门户监测仪是检测货物集装箱内放射性物质的有效手段。聚乙烯醇(PVT)监测器的应用最为广泛,主要是由于其成本。与其他探测器相比,缺点是测量能谱的分辨率较低。这种低分辨率阻碍了使用光谱分析来区分同位素和丢弃有害警报。因此,每个警报都必须通过手持探测器或基于光谱的辐射门户进行第二次检查。就吞吐量而言,这种二次检查的成本可能很高,特别是在海上港口和边境。本文的目的是评估神经网络从PVT rpm测量的能谱中区分放射性同位素的能力。为此,系统提出了对这些能谱进行预处理,将其按特定区域划分并转化为信息的方法。在第二步中,神经网络架构使用这些信息,从而可以将放射性同位素分类为不同的组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network based radioisotope discrimination on polyvinyl toluene radiation portal monitors
Radiation portal monitors (RPMs) are an effective mean of detecting radioactive material inside cargo containers. Polyvinyl toluene (PVT) monitors are the most broadly extended mainly due to their cost. The drawback when compared to other detectors is the lower resolution of the measured energy spectra. This low resolution hinders the use of spectrometric analysis to discriminate isotopes and discard nuisance alarms. Every alarm must thus be checked in a second inspection by a handheld detector or a spectroscopy-based radiation portal. The cost of this secondary inspection in terms of throughput can be significant, specially at maritime ports and borders. This paper aim is to assess the ability of neural networks to discriminate radioactive isotopes from the energy spectrum as measured by PVT RPMs. For this purpose, the system proposed preprocesses these energy spectra, dividing them by specific zones and transforming them into information. In a second step, this information is used by the neural network architecture, which allows to classify the radioisotopes in different groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信