基于卷积神经网络的糖尿病视网膜病变检测

Abisha J, Jeba P. S
{"title":"基于卷积神经网络的糖尿病视网膜病变检测","authors":"Abisha J, Jeba P. S","doi":"10.59544/mine9624/ngcesi23p89","DOIUrl":null,"url":null,"abstract":"This project proposes machine learning methods for detecting diabetic retinopathy by using CNN. The classification of retinal lesions from non-lesions using CNN classifiers is examined. Retinal retina images can be evaluated using machine learning-based medical image analysis. The image is pre-processed using the Contrast limited adaptive histogram equalization (CLAHE) filter. CLAHE is used to improve the visibility level of blurry images. The image is segmented using the FCM method to generate an appropriate threshold value for data segmentation. The method of feature extraction is implemented by RLC. The Gray Level Co – occurrence Matrix (GLCM) method is used for extracting statistical skin parameters in a given direction and distance. The use of convolutional neural network (CNN) algorithms has facilitated the early identification of diabetic retinopathy. This project provides excellent specificity and sensitivity for classifying images as with or without diabetic retinopathy. This project is implemented using MATLAB software.","PeriodicalId":315694,"journal":{"name":"The International Conference on scientific innovations in Science, Technology, and Management","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Diabetic Retinopathy by Using Convolutional Neural Network\",\"authors\":\"Abisha J, Jeba P. S\",\"doi\":\"10.59544/mine9624/ngcesi23p89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project proposes machine learning methods for detecting diabetic retinopathy by using CNN. The classification of retinal lesions from non-lesions using CNN classifiers is examined. Retinal retina images can be evaluated using machine learning-based medical image analysis. The image is pre-processed using the Contrast limited adaptive histogram equalization (CLAHE) filter. CLAHE is used to improve the visibility level of blurry images. The image is segmented using the FCM method to generate an appropriate threshold value for data segmentation. The method of feature extraction is implemented by RLC. The Gray Level Co – occurrence Matrix (GLCM) method is used for extracting statistical skin parameters in a given direction and distance. The use of convolutional neural network (CNN) algorithms has facilitated the early identification of diabetic retinopathy. This project provides excellent specificity and sensitivity for classifying images as with or without diabetic retinopathy. This project is implemented using MATLAB software.\",\"PeriodicalId\":315694,\"journal\":{\"name\":\"The International Conference on scientific innovations in Science, Technology, and Management\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Conference on scientific innovations in Science, Technology, and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59544/mine9624/ngcesi23p89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Conference on scientific innovations in Science, Technology, and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59544/mine9624/ngcesi23p89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本项目提出了利用CNN进行糖尿病视网膜病变检测的机器学习方法。研究了使用CNN分类器对视网膜病变和非病变进行分类。视网膜视网膜图像可以使用基于机器学习的医学图像分析进行评估。使用对比度限制自适应直方图均衡化(CLAHE)滤波器对图像进行预处理。CLAHE用于提高模糊图像的可见度。使用FCM方法对图像进行分割,以生成适当的阈值进行数据分割。特征提取方法采用RLC实现。采用灰度共生矩阵(GLCM)方法在给定的方向和距离上提取统计皮肤参数。卷积神经网络(CNN)算法的使用促进了糖尿病视网膜病变的早期识别。该项目提供了极好的特异性和敏感性分类图像是否有糖尿病视网膜病变。本课题采用MATLAB软件实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Diabetic Retinopathy by Using Convolutional Neural Network
This project proposes machine learning methods for detecting diabetic retinopathy by using CNN. The classification of retinal lesions from non-lesions using CNN classifiers is examined. Retinal retina images can be evaluated using machine learning-based medical image analysis. The image is pre-processed using the Contrast limited adaptive histogram equalization (CLAHE) filter. CLAHE is used to improve the visibility level of blurry images. The image is segmented using the FCM method to generate an appropriate threshold value for data segmentation. The method of feature extraction is implemented by RLC. The Gray Level Co – occurrence Matrix (GLCM) method is used for extracting statistical skin parameters in a given direction and distance. The use of convolutional neural network (CNN) algorithms has facilitated the early identification of diabetic retinopathy. This project provides excellent specificity and sensitivity for classifying images as with or without diabetic retinopathy. This project is implemented using MATLAB software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信