基于Gabor尺度信息的人耳识别

Baoqing Zhang, Zhichun Mu, Hui Zeng, Hong-bo Huang
{"title":"基于Gabor尺度信息的人耳识别","authors":"Baoqing Zhang, Zhichun Mu, Hui Zeng, Hong-bo Huang","doi":"10.1109/ICWAPR.2013.6599308","DOIUrl":null,"url":null,"abstract":"As a promising biometrics, ear recognition is attracting increasing research interests among researchers in recent years. It has a wide range of civilian and law-enforcement applications. In this paper, a new feature extraction approach is investigated for ear recognition by using scale information of multi-scale Gabor filters. Compared with augmented Gabor features defined via concatenation of the Gabor filtering coefficients, the proposed Gabor scale feature will not only avoid too much redundancy but also tend to extract more precise structural information. So, the proposed feature is more robust to ear image variations. Rigorous experimental results on the ear image dataset of UND and USTB database III show the effectiveness of the proposed Gabor scale feature for ear recognition.","PeriodicalId":236156,"journal":{"name":"2013 International Conference on Wavelet Analysis and Pattern Recognition","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ear recognition based on Gabor scale information\",\"authors\":\"Baoqing Zhang, Zhichun Mu, Hui Zeng, Hong-bo Huang\",\"doi\":\"10.1109/ICWAPR.2013.6599308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a promising biometrics, ear recognition is attracting increasing research interests among researchers in recent years. It has a wide range of civilian and law-enforcement applications. In this paper, a new feature extraction approach is investigated for ear recognition by using scale information of multi-scale Gabor filters. Compared with augmented Gabor features defined via concatenation of the Gabor filtering coefficients, the proposed Gabor scale feature will not only avoid too much redundancy but also tend to extract more precise structural information. So, the proposed feature is more robust to ear image variations. Rigorous experimental results on the ear image dataset of UND and USTB database III show the effectiveness of the proposed Gabor scale feature for ear recognition.\",\"PeriodicalId\":236156,\"journal\":{\"name\":\"2013 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2013.6599308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2013.6599308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

耳识别作为一种很有前途的生物识别技术,近年来引起了越来越多研究者的研究兴趣。它有广泛的民用和执法应用。本文研究了一种利用多尺度Gabor滤波器的尺度信息提取耳部特征的新方法。与通过Gabor滤波系数的连接定义的增广Gabor特征相比,所提出的Gabor尺度特征不仅避免了过多的冗余,而且倾向于提取更精确的结构信息。因此,所提出的特征对耳图像的变化具有更强的鲁棒性。在UND和USTB数据库III的耳图像数据集上进行的严格实验结果表明,所提出的Gabor尺度特征用于耳识别是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ear recognition based on Gabor scale information
As a promising biometrics, ear recognition is attracting increasing research interests among researchers in recent years. It has a wide range of civilian and law-enforcement applications. In this paper, a new feature extraction approach is investigated for ear recognition by using scale information of multi-scale Gabor filters. Compared with augmented Gabor features defined via concatenation of the Gabor filtering coefficients, the proposed Gabor scale feature will not only avoid too much redundancy but also tend to extract more precise structural information. So, the proposed feature is more robust to ear image variations. Rigorous experimental results on the ear image dataset of UND and USTB database III show the effectiveness of the proposed Gabor scale feature for ear recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信