{"title":"基于多目标人工狼群算法的帕累托最优解推荐","authors":"Yi Chen, Zhonglai Wang, Erfu Yang, Yun Li","doi":"10.1109/SKIMA.2016.7916207","DOIUrl":null,"url":null,"abstract":"In practical applications, multi-objective optimisation is one of the most challenging problems that engineers face. For this, Pareto-optimality is the most widely adopted concept, which is a set of optimal trade-offs between conflicting objectives without committing to a recommendation for decision-making. In this paper, a fast approach to Pareto-optimal solution recommendation is developed. It recommends an optimal ranking for decision-makers using a Pareto reliability index. Further, a mean average precision and a mean standard deviation are utilised to gauge the trend of the evolutionary process. A multi-objective artificial wolf-pack algorithm is thus developed to handle the multi-objective problem using a non-dominated sorting method (MAWNS). This is tested in a case study, where the MAWNS is employed as an optimiser for a widely adopted standard test problem, ZDT6. The results show that the proposed method works valuably for the multi-objective optimisations.","PeriodicalId":417370,"journal":{"name":"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Pareto-optimality solution recommendation using a multi-objective artificial wolf-pack algorithm\",\"authors\":\"Yi Chen, Zhonglai Wang, Erfu Yang, Yun Li\",\"doi\":\"10.1109/SKIMA.2016.7916207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In practical applications, multi-objective optimisation is one of the most challenging problems that engineers face. For this, Pareto-optimality is the most widely adopted concept, which is a set of optimal trade-offs between conflicting objectives without committing to a recommendation for decision-making. In this paper, a fast approach to Pareto-optimal solution recommendation is developed. It recommends an optimal ranking for decision-makers using a Pareto reliability index. Further, a mean average precision and a mean standard deviation are utilised to gauge the trend of the evolutionary process. A multi-objective artificial wolf-pack algorithm is thus developed to handle the multi-objective problem using a non-dominated sorting method (MAWNS). This is tested in a case study, where the MAWNS is employed as an optimiser for a widely adopted standard test problem, ZDT6. The results show that the proposed method works valuably for the multi-objective optimisations.\",\"PeriodicalId\":417370,\"journal\":{\"name\":\"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKIMA.2016.7916207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA.2016.7916207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pareto-optimality solution recommendation using a multi-objective artificial wolf-pack algorithm
In practical applications, multi-objective optimisation is one of the most challenging problems that engineers face. For this, Pareto-optimality is the most widely adopted concept, which is a set of optimal trade-offs between conflicting objectives without committing to a recommendation for decision-making. In this paper, a fast approach to Pareto-optimal solution recommendation is developed. It recommends an optimal ranking for decision-makers using a Pareto reliability index. Further, a mean average precision and a mean standard deviation are utilised to gauge the trend of the evolutionary process. A multi-objective artificial wolf-pack algorithm is thus developed to handle the multi-objective problem using a non-dominated sorting method (MAWNS). This is tested in a case study, where the MAWNS is employed as an optimiser for a widely adopted standard test problem, ZDT6. The results show that the proposed method works valuably for the multi-objective optimisations.