多媒体应用中芯片多处理器的内核间数据重用和流水线

L. A. Bathen, Yongjin Ahn, N. Dutt, S. Pasricha
{"title":"多媒体应用中芯片多处理器的内核间数据重用和流水线","authors":"L. A. Bathen, Yongjin Ahn, N. Dutt, S. Pasricha","doi":"10.1109/ESTMED.2009.5336815","DOIUrl":null,"url":null,"abstract":"The increasing demand for low power and high performance multimedia embedded systems has motivatedation bandwidth and latency requirements under a tight power budge the need for effective solutions to satisfy applict. As technology scales, it is imperative that applications are optimized to take full advantage of the underlying resources and meet both power and performance requirements. We propose a methodology capable of discovering and enabling parallelism opportunities via code transformations, efficiently distributing the computational load across resources, and minimizing unnecessary data transfers. Our approach decomposes the application's tasks into smaller units of computations called kernels, which are distributed and pipelined across the different processing resources. We exploit the ideas of inter-kernel data reuse to minimize unnecessary data transfers between kernels and early execution edges to drive performance. Our experimental results on a JPEG2000 case study show up to 80% performance improvement and 60% dynamic power reduction over standard application mapping approaches.","PeriodicalId":104499,"journal":{"name":"2009 IEEE/ACM/IFIP 7th Workshop on Embedded Systems for Real-Time Multimedia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Inter-kernel data reuse and pipelining on chip-multiprocessors for multimedia applications\",\"authors\":\"L. A. Bathen, Yongjin Ahn, N. Dutt, S. Pasricha\",\"doi\":\"10.1109/ESTMED.2009.5336815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing demand for low power and high performance multimedia embedded systems has motivatedation bandwidth and latency requirements under a tight power budge the need for effective solutions to satisfy applict. As technology scales, it is imperative that applications are optimized to take full advantage of the underlying resources and meet both power and performance requirements. We propose a methodology capable of discovering and enabling parallelism opportunities via code transformations, efficiently distributing the computational load across resources, and minimizing unnecessary data transfers. Our approach decomposes the application's tasks into smaller units of computations called kernels, which are distributed and pipelined across the different processing resources. We exploit the ideas of inter-kernel data reuse to minimize unnecessary data transfers between kernels and early execution edges to drive performance. Our experimental results on a JPEG2000 case study show up to 80% performance improvement and 60% dynamic power reduction over standard application mapping approaches.\",\"PeriodicalId\":104499,\"journal\":{\"name\":\"2009 IEEE/ACM/IFIP 7th Workshop on Embedded Systems for Real-Time Multimedia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE/ACM/IFIP 7th Workshop on Embedded Systems for Real-Time Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTMED.2009.5336815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE/ACM/IFIP 7th Workshop on Embedded Systems for Real-Time Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTMED.2009.5336815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

对低功耗、高性能多媒体嵌入式系统的需求日益增长,在紧张的功耗预算下,对带宽和延迟的要求也越来越高,需要有效的解决方案来满足应用。随着技术的扩展,必须对应用程序进行优化,以充分利用底层资源,同时满足功耗和性能要求。我们提出了一种方法,能够通过代码转换发现并启用并行机会,有效地分配资源之间的计算负载,并最大限度地减少不必要的数据传输。我们的方法将应用程序的任务分解为更小的计算单元(称为内核),这些计算单元分布在不同的处理资源上,并通过流水线进行处理。我们利用内核间数据重用的思想来减少内核和早期执行边之间不必要的数据传输,以提高性能。我们在JPEG2000案例研究上的实验结果表明,与标准应用程序映射方法相比,性能提高了80%,动态功耗降低了60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inter-kernel data reuse and pipelining on chip-multiprocessors for multimedia applications
The increasing demand for low power and high performance multimedia embedded systems has motivatedation bandwidth and latency requirements under a tight power budge the need for effective solutions to satisfy applict. As technology scales, it is imperative that applications are optimized to take full advantage of the underlying resources and meet both power and performance requirements. We propose a methodology capable of discovering and enabling parallelism opportunities via code transformations, efficiently distributing the computational load across resources, and minimizing unnecessary data transfers. Our approach decomposes the application's tasks into smaller units of computations called kernels, which are distributed and pipelined across the different processing resources. We exploit the ideas of inter-kernel data reuse to minimize unnecessary data transfers between kernels and early execution edges to drive performance. Our experimental results on a JPEG2000 case study show up to 80% performance improvement and 60% dynamic power reduction over standard application mapping approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信