存在不确定性的柔性高超声速飞行器鲁棒轨迹线性化控制

Z. Pu, Xiang-min Tan, Guoliang Fan, J. Yi
{"title":"存在不确定性的柔性高超声速飞行器鲁棒轨迹线性化控制","authors":"Z. Pu, Xiang-min Tan, Guoliang Fan, J. Yi","doi":"10.1109/ICMA.2013.6617946","DOIUrl":null,"url":null,"abstract":"This paper addresses the design of a robust trajectory linearization control (TLC) scheme for a flexible air-breathing hypersonic vehicle model with multiple uncertainties. Because of the model complexity, the flexibility effects and open-loop behaviors are analyzed, offering insights on the vehicle features and guidelines for control design. Based on the analysis, a basic TLC frame, including an adaptive time-varying bandwidth algorithm, is firstly constructed. As for the inevitable uncertainties in hypersonic flight, a uniform nonlinear uncertainty model is explored which lumps all external disturbances and typical internal uncertainties such as propulsive perturbations and variations in control effectiveness together. Then extended state observer (ESO) technique is integrated into the basic TLC frame to estimate and compensate these uncertainties, forming a robust TLC scheme. Two flight cases are conducted, through which the robust scheme exhibits great tracking performance and uncertainty rejection ability.","PeriodicalId":335884,"journal":{"name":"2013 IEEE International Conference on Mechatronics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust trajectory linearization control of a flexible hypersonic vehicle in the presence of uncertainties\",\"authors\":\"Z. Pu, Xiang-min Tan, Guoliang Fan, J. Yi\",\"doi\":\"10.1109/ICMA.2013.6617946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the design of a robust trajectory linearization control (TLC) scheme for a flexible air-breathing hypersonic vehicle model with multiple uncertainties. Because of the model complexity, the flexibility effects and open-loop behaviors are analyzed, offering insights on the vehicle features and guidelines for control design. Based on the analysis, a basic TLC frame, including an adaptive time-varying bandwidth algorithm, is firstly constructed. As for the inevitable uncertainties in hypersonic flight, a uniform nonlinear uncertainty model is explored which lumps all external disturbances and typical internal uncertainties such as propulsive perturbations and variations in control effectiveness together. Then extended state observer (ESO) technique is integrated into the basic TLC frame to estimate and compensate these uncertainties, forming a robust TLC scheme. Two flight cases are conducted, through which the robust scheme exhibits great tracking performance and uncertainty rejection ability.\",\"PeriodicalId\":335884,\"journal\":{\"name\":\"2013 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2013.6617946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2013.6617946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对具有多不确定性的柔性吸气式高超声速飞行器模型,设计了一种鲁棒轨迹线性化控制方案。由于模型的复杂性,分析了柔性效应和开环行为,为整车特性和控制设计提供了指导。在此基础上,首先构造了TLC基本帧,其中包括自适应时变带宽算法。针对高超声速飞行中不可避免的不确定性,探讨了一种统一的非线性不确定性模型,该模型将所有外部干扰和典型的内部不确定性(如推进扰动和控制效能变化)集中在一起。然后将扩展状态观测器(ESO)技术集成到基本TLC框架中,对这些不确定性进行估计和补偿,形成鲁棒TLC方案。仿真结果表明,该鲁棒方案具有良好的跟踪性能和抗不确定性能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust trajectory linearization control of a flexible hypersonic vehicle in the presence of uncertainties
This paper addresses the design of a robust trajectory linearization control (TLC) scheme for a flexible air-breathing hypersonic vehicle model with multiple uncertainties. Because of the model complexity, the flexibility effects and open-loop behaviors are analyzed, offering insights on the vehicle features and guidelines for control design. Based on the analysis, a basic TLC frame, including an adaptive time-varying bandwidth algorithm, is firstly constructed. As for the inevitable uncertainties in hypersonic flight, a uniform nonlinear uncertainty model is explored which lumps all external disturbances and typical internal uncertainties such as propulsive perturbations and variations in control effectiveness together. Then extended state observer (ESO) technique is integrated into the basic TLC frame to estimate and compensate these uncertainties, forming a robust TLC scheme. Two flight cases are conducted, through which the robust scheme exhibits great tracking performance and uncertainty rejection ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信