用于农业监测的NOAA/AVHRR多时相影像、气候条件和甘蔗田耕地分析

R. R. V. Gonçalves, J. Zullo, C. S. Ferraresso, E. P. M. Sousa, L. A. Romani, A. J. Traina
{"title":"用于农业监测的NOAA/AVHRR多时相影像、气候条件和甘蔗田耕地分析","authors":"R. R. V. Gonçalves, J. Zullo, C. S. Ferraresso, E. P. M. Sousa, L. A. Romani, A. J. Traina","doi":"10.1109/MULTI-TEMP.2011.6005090","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to assess the sugarcane yield variation in regional scale through NDVI images from a low resolution spatial satellite. We have used Principal Component Analysis (PCA) and Cluster Analysis to correlate sugarcane cultivated land with multitemporal NDVI images also verifying the influence of climate conditions to them. According to both techniques (PCA and clustering), clusters for different set of variables are distinct only when cultivated land was included in the dataset. On the contrary, climate variables determine the clustering formation. Exploring multitemporal images from high resolution satellites through data mining techniques, such as cluster analysis, is a valuable way to improve crops monitoring specially at a time when it becomes increasingly important to understand the impact of climate change on agriculture.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of NOAA/AVHRR multitemporal images, climate conditions and cultivated land of sugarcane fields applied to agricultural monitoring\",\"authors\":\"R. R. V. Gonçalves, J. Zullo, C. S. Ferraresso, E. P. M. Sousa, L. A. Romani, A. J. Traina\",\"doi\":\"10.1109/MULTI-TEMP.2011.6005090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this work is to assess the sugarcane yield variation in regional scale through NDVI images from a low resolution spatial satellite. We have used Principal Component Analysis (PCA) and Cluster Analysis to correlate sugarcane cultivated land with multitemporal NDVI images also verifying the influence of climate conditions to them. According to both techniques (PCA and clustering), clusters for different set of variables are distinct only when cultivated land was included in the dataset. On the contrary, climate variables determine the clustering formation. Exploring multitemporal images from high resolution satellites through data mining techniques, such as cluster analysis, is a valuable way to improve crops monitoring specially at a time when it becomes increasingly important to understand the impact of climate change on agriculture.\",\"PeriodicalId\":254778,\"journal\":{\"name\":\"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MULTI-TEMP.2011.6005090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利用低分辨率空间卫星NDVI影像,对甘蔗产量在区域尺度上的变化进行了评价。利用主成分分析(PCA)和聚类分析(Cluster Analysis)对甘蔗耕地与NDVI影像进行了关联,并验证了气候条件对其的影响。根据两种技术(PCA和聚类),只有当数据集中包含耕地时,不同变量集的聚类才不同。相反,气候变量决定聚类的形成。通过聚类分析等数据挖掘技术探索高分辨率卫星的多时相图像,是改善作物监测的一种有价值的方法,特别是在了解气候变化对农业的影响变得越来越重要的时候。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of NOAA/AVHRR multitemporal images, climate conditions and cultivated land of sugarcane fields applied to agricultural monitoring
The purpose of this work is to assess the sugarcane yield variation in regional scale through NDVI images from a low resolution spatial satellite. We have used Principal Component Analysis (PCA) and Cluster Analysis to correlate sugarcane cultivated land with multitemporal NDVI images also verifying the influence of climate conditions to them. According to both techniques (PCA and clustering), clusters for different set of variables are distinct only when cultivated land was included in the dataset. On the contrary, climate variables determine the clustering formation. Exploring multitemporal images from high resolution satellites through data mining techniques, such as cluster analysis, is a valuable way to improve crops monitoring specially at a time when it becomes increasingly important to understand the impact of climate change on agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信