利用机器学习技术分析网络流量来识别勒索软件家族

May Almousa, Janet Osawere, Mohd Anwar
{"title":"利用机器学习技术分析网络流量来识别勒索软件家族","authors":"May Almousa, Janet Osawere, Mohd Anwar","doi":"10.1109/TransAI51903.2021.00012","DOIUrl":null,"url":null,"abstract":"The number of prominent ransomware attacks has increased recently. In this research, we detect ransomware by analyzing network traffic by using machine learning algorithms and comparing their detection performances. We have developed multi-class classification models to detect families of ransomware by using the selected network traffic features, which focus on the Transmission Control Protocol (TCP). Our experiment showed that decision trees performed best for classifying ransomware families with 99.83% accuracy, which is slightly better than the random forest algorithm with 99.61% accuracy. The experimental result without feature selection classified six ransomware families with high accuracy. On the other hand, classifiers with feature selection gave nearly the same result as those without feature selection. However, using feature selection gives the advantage of lower memory usage and reduced processing time, thereby increasing speed. We discovered the following ten important features for detecting ransomware: time delta, frame length, IP length, IP destination, IP source, TCP length, TCP sequence, TCP next sequence, TCP header length, and TCP initial round trip.","PeriodicalId":426766,"journal":{"name":"2021 Third International Conference on Transdisciplinary AI (TransAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of Ransomware families by Analyzing Network Traffic Using Machine Learning Techniques\",\"authors\":\"May Almousa, Janet Osawere, Mohd Anwar\",\"doi\":\"10.1109/TransAI51903.2021.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of prominent ransomware attacks has increased recently. In this research, we detect ransomware by analyzing network traffic by using machine learning algorithms and comparing their detection performances. We have developed multi-class classification models to detect families of ransomware by using the selected network traffic features, which focus on the Transmission Control Protocol (TCP). Our experiment showed that decision trees performed best for classifying ransomware families with 99.83% accuracy, which is slightly better than the random forest algorithm with 99.61% accuracy. The experimental result without feature selection classified six ransomware families with high accuracy. On the other hand, classifiers with feature selection gave nearly the same result as those without feature selection. However, using feature selection gives the advantage of lower memory usage and reduced processing time, thereby increasing speed. We discovered the following ten important features for detecting ransomware: time delta, frame length, IP length, IP destination, IP source, TCP length, TCP sequence, TCP next sequence, TCP header length, and TCP initial round trip.\",\"PeriodicalId\":426766,\"journal\":{\"name\":\"2021 Third International Conference on Transdisciplinary AI (TransAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Third International Conference on Transdisciplinary AI (TransAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TransAI51903.2021.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Third International Conference on Transdisciplinary AI (TransAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TransAI51903.2021.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近,勒索软件攻击的数量有所增加。在本研究中,我们通过使用机器学习算法分析网络流量并比较其检测性能来检测勒索软件。我们开发了多类分类模型,通过使用选定的网络流量特征来检测勒索软件家族,这些特征集中在传输控制协议(TCP)上。我们的实验表明,决策树在分类勒索软件家族方面表现最好,准确率为99.83%,略高于随机森林算法的99.61%。在没有特征选择的情况下,实验结果对6个勒索软件家族进行了高精度分类。另一方面,有特征选择的分类器与没有特征选择的分类器给出了几乎相同的结果。然而,使用特征选择的优点是内存使用量更低,处理时间更短,从而提高了速度。我们发现了以下十个检测勒索软件的重要特征:时间差、帧长度、IP长度、IP目的地、IP源、TCP长度、TCP序列、TCP下一个序列、TCP报头长度和TCP初始往返。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Ransomware families by Analyzing Network Traffic Using Machine Learning Techniques
The number of prominent ransomware attacks has increased recently. In this research, we detect ransomware by analyzing network traffic by using machine learning algorithms and comparing their detection performances. We have developed multi-class classification models to detect families of ransomware by using the selected network traffic features, which focus on the Transmission Control Protocol (TCP). Our experiment showed that decision trees performed best for classifying ransomware families with 99.83% accuracy, which is slightly better than the random forest algorithm with 99.61% accuracy. The experimental result without feature selection classified six ransomware families with high accuracy. On the other hand, classifiers with feature selection gave nearly the same result as those without feature selection. However, using feature selection gives the advantage of lower memory usage and reduced processing time, thereby increasing speed. We discovered the following ten important features for detecting ransomware: time delta, frame length, IP length, IP destination, IP source, TCP length, TCP sequence, TCP next sequence, TCP header length, and TCP initial round trip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信