用于高分辨率图像编辑传播的稀疏字典学习

Xiaowu Chen, Dongqing Zou, Jianwei Li, Xiaochun Cao, Qinping Zhao, Hao Zhang
{"title":"用于高分辨率图像编辑传播的稀疏字典学习","authors":"Xiaowu Chen, Dongqing Zou, Jianwei Li, Xiaochun Cao, Qinping Zhao, Hao Zhang","doi":"10.1109/CVPR.2014.365","DOIUrl":null,"url":null,"abstract":"We introduce a method of sparse dictionary learning for edit propagation of high-resolution images or video. Previous approaches for edit propagation typically employ a global optimization over the whole set of image pixels, incurring a prohibitively high memory and time consumption for high-resolution images. Rather than propagating an edit pixel by pixel, we follow the principle of sparse representation to obtain a compact set of representative samples (or features) and perform edit propagation on the samples instead. The sparse set of samples provides an intrinsic basis for an input image, and the coding coefficients capture the linear relationship between all pixels and the samples. The representative set of samples is then optimized by a novel scheme which maximizes the KL-divergence between each sample pair to remove redundant samples. We show several applications of sparsity-based edit propagation including video recoloring, theme editing, and seamless cloning, operating on both color and texture features. We demonstrate that with a sample-to-pixel ratio in the order of 0.01%, signifying a significant reduction on memory consumption, our method still maintains a high-degree of visual fidelity.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Sparse Dictionary Learning for Edit Propagation of High-Resolution Images\",\"authors\":\"Xiaowu Chen, Dongqing Zou, Jianwei Li, Xiaochun Cao, Qinping Zhao, Hao Zhang\",\"doi\":\"10.1109/CVPR.2014.365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a method of sparse dictionary learning for edit propagation of high-resolution images or video. Previous approaches for edit propagation typically employ a global optimization over the whole set of image pixels, incurring a prohibitively high memory and time consumption for high-resolution images. Rather than propagating an edit pixel by pixel, we follow the principle of sparse representation to obtain a compact set of representative samples (or features) and perform edit propagation on the samples instead. The sparse set of samples provides an intrinsic basis for an input image, and the coding coefficients capture the linear relationship between all pixels and the samples. The representative set of samples is then optimized by a novel scheme which maximizes the KL-divergence between each sample pair to remove redundant samples. We show several applications of sparsity-based edit propagation including video recoloring, theme editing, and seamless cloning, operating on both color and texture features. We demonstrate that with a sample-to-pixel ratio in the order of 0.01%, signifying a significant reduction on memory consumption, our method still maintains a high-degree of visual fidelity.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

介绍了一种用于高分辨率图像或视频编辑传播的稀疏字典学习方法。以前的编辑传播方法通常对整个图像像素集进行全局优化,对于高分辨率图像,这会导致过高的内存和时间消耗。我们不是逐像素传播编辑,而是遵循稀疏表示的原则来获得一组紧凑的代表性样本(或特征),并在样本上执行编辑传播。样本的稀疏集为输入图像提供了内在的基础,编码系数捕获了所有像素与样本之间的线性关系。然后通过一种新颖的方案来优化样本的代表性集,该方案最大化每个样本对之间的kl -散度以去除冗余样本。我们展示了基于稀疏的编辑传播的几个应用,包括视频重新着色、主题编辑和无缝克隆,同时操作颜色和纹理特征。我们证明了样本像素比在0.01%左右,这意味着内存消耗的显著减少,我们的方法仍然保持了高度的视觉保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Dictionary Learning for Edit Propagation of High-Resolution Images
We introduce a method of sparse dictionary learning for edit propagation of high-resolution images or video. Previous approaches for edit propagation typically employ a global optimization over the whole set of image pixels, incurring a prohibitively high memory and time consumption for high-resolution images. Rather than propagating an edit pixel by pixel, we follow the principle of sparse representation to obtain a compact set of representative samples (or features) and perform edit propagation on the samples instead. The sparse set of samples provides an intrinsic basis for an input image, and the coding coefficients capture the linear relationship between all pixels and the samples. The representative set of samples is then optimized by a novel scheme which maximizes the KL-divergence between each sample pair to remove redundant samples. We show several applications of sparsity-based edit propagation including video recoloring, theme editing, and seamless cloning, operating on both color and texture features. We demonstrate that with a sample-to-pixel ratio in the order of 0.01%, signifying a significant reduction on memory consumption, our method still maintains a high-degree of visual fidelity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信