卷积神经网络图像配准

K. Krishna, O. Abuomar, M. Al-khassaweneh
{"title":"卷积神经网络图像配准","authors":"K. Krishna, O. Abuomar, M. Al-khassaweneh","doi":"10.1109/EIT51626.2021.9491875","DOIUrl":null,"url":null,"abstract":"Image registration plays a fundamental role in many computer vision applications, such as medical image processing, camera pose estimation, etc. It includes the estimation of geometric transformation and image warping. The goal of this study is to design, develop and evaluate an end to end trainable convolution neural network (CNN) which can learn homography and affine transformation’s controlling parameters. The trained model can be used for registering unseen image pairs to provide a better-quality image registration. The training data is based on publicly available image dataset and truth tagging is accomplished by generating synthetic image pairs instead of depending on manual annotations.","PeriodicalId":162816,"journal":{"name":"2021 IEEE International Conference on Electro Information Technology (EIT)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convolution Neural Network for Image Registration\",\"authors\":\"K. Krishna, O. Abuomar, M. Al-khassaweneh\",\"doi\":\"10.1109/EIT51626.2021.9491875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image registration plays a fundamental role in many computer vision applications, such as medical image processing, camera pose estimation, etc. It includes the estimation of geometric transformation and image warping. The goal of this study is to design, develop and evaluate an end to end trainable convolution neural network (CNN) which can learn homography and affine transformation’s controlling parameters. The trained model can be used for registering unseen image pairs to provide a better-quality image registration. The training data is based on publicly available image dataset and truth tagging is accomplished by generating synthetic image pairs instead of depending on manual annotations.\",\"PeriodicalId\":162816,\"journal\":{\"name\":\"2021 IEEE International Conference on Electro Information Technology (EIT)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Electro Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT51626.2021.9491875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Electro Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT51626.2021.9491875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像配准在许多计算机视觉应用中起着至关重要的作用,如医学图像处理、相机姿态估计等。它包括几何变换估计和图像翘曲估计。本研究的目标是设计、开发和评估一个能够学习单应性和仿射变换控制参数的端到端可训练卷积神经网络(CNN)。训练后的模型可用于未见图像对的配准,以提供更好的图像配准质量。训练数据基于公开可用的图像数据集,通过生成合成图像对来完成真值标注,而不是依赖于手动标注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolution Neural Network for Image Registration
Image registration plays a fundamental role in many computer vision applications, such as medical image processing, camera pose estimation, etc. It includes the estimation of geometric transformation and image warping. The goal of this study is to design, develop and evaluate an end to end trainable convolution neural network (CNN) which can learn homography and affine transformation’s controlling parameters. The trained model can be used for registering unseen image pairs to provide a better-quality image registration. The training data is based on publicly available image dataset and truth tagging is accomplished by generating synthetic image pairs instead of depending on manual annotations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信