{"title":"使用长期和短期线索的双流语音去噪网络","authors":"Nan Li, Meng Ge, Longbiao Wang, J. Dang","doi":"10.1109/IJCNN55064.2022.9892662","DOIUrl":null,"url":null,"abstract":"For reverberation, the current speech is usually influenced by the previous frames. Traditional neural network-based speech dereverberation (SD) methods directly map the current speech frame that only has short-term cues to clean speech or learn a mask, which can not utilize long-term information to remove late reverberation and further limit SD's ability. To address this issue, we propose a dual-stream speech dereverberation network (DualSDNet) using long-term and short-term cues. First, we analyze the effectiveness of using a finite impulse response (FIR) based on long-term information recorded filter by reverberation generation progress. Second, to make full use of both long-term and short-term information, we further design a dual-stream network, it can map both long and short speech to high-dimensional representation and pay more attention to a more helpful time index. The results of the REVERB Challenge data show that our DualSDNet consistently outperforms the state-of-the-art SD baselines.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-stream Speech Dereverberation Network Using Long-term and Short-term Cues\",\"authors\":\"Nan Li, Meng Ge, Longbiao Wang, J. Dang\",\"doi\":\"10.1109/IJCNN55064.2022.9892662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For reverberation, the current speech is usually influenced by the previous frames. Traditional neural network-based speech dereverberation (SD) methods directly map the current speech frame that only has short-term cues to clean speech or learn a mask, which can not utilize long-term information to remove late reverberation and further limit SD's ability. To address this issue, we propose a dual-stream speech dereverberation network (DualSDNet) using long-term and short-term cues. First, we analyze the effectiveness of using a finite impulse response (FIR) based on long-term information recorded filter by reverberation generation progress. Second, to make full use of both long-term and short-term information, we further design a dual-stream network, it can map both long and short speech to high-dimensional representation and pay more attention to a more helpful time index. The results of the REVERB Challenge data show that our DualSDNet consistently outperforms the state-of-the-art SD baselines.\",\"PeriodicalId\":106974,\"journal\":{\"name\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN55064.2022.9892662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual-stream Speech Dereverberation Network Using Long-term and Short-term Cues
For reverberation, the current speech is usually influenced by the previous frames. Traditional neural network-based speech dereverberation (SD) methods directly map the current speech frame that only has short-term cues to clean speech or learn a mask, which can not utilize long-term information to remove late reverberation and further limit SD's ability. To address this issue, we propose a dual-stream speech dereverberation network (DualSDNet) using long-term and short-term cues. First, we analyze the effectiveness of using a finite impulse response (FIR) based on long-term information recorded filter by reverberation generation progress. Second, to make full use of both long-term and short-term information, we further design a dual-stream network, it can map both long and short speech to high-dimensional representation and pay more attention to a more helpful time index. The results of the REVERB Challenge data show that our DualSDNet consistently outperforms the state-of-the-art SD baselines.