一致的生物特征评分水平融合公式

J. Hube
{"title":"一致的生物特征评分水平融合公式","authors":"J. Hube","doi":"10.1109/BTAS.2017.8272714","DOIUrl":null,"url":null,"abstract":"In an operational setting of key practical importance for a biometric application deployment is the ability to set thresholds to meet error rate targets. Consequently there is a need to consider how output scores from multi-modal score-level fusion are defined. We show a method to ensure these fused scores are consistent with a known input score definition. We derive fusion formulae for the case of input scores based on false acceptance rates. We provide examples to highlight implementation issues.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulae for consistent biometric score level fusion\",\"authors\":\"J. Hube\",\"doi\":\"10.1109/BTAS.2017.8272714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an operational setting of key practical importance for a biometric application deployment is the ability to set thresholds to meet error rate targets. Consequently there is a need to consider how output scores from multi-modal score-level fusion are defined. We show a method to ensure these fused scores are consistent with a known input score definition. We derive fusion formulae for the case of input scores based on false acceptance rates. We provide examples to highlight implementation issues.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在对生物识别应用程序部署具有关键实际重要性的操作设置中,设置阈值以满足错误率目标的能力。因此,需要考虑如何定义多模态分数级融合的输出分数。我们展示了一种确保这些融合分数与已知输入分数定义一致的方法。我们推导了基于错误接受率的输入分数情况下的融合公式。我们提供示例来突出实现问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formulae for consistent biometric score level fusion
In an operational setting of key practical importance for a biometric application deployment is the ability to set thresholds to meet error rate targets. Consequently there is a need to consider how output scores from multi-modal score-level fusion are defined. We show a method to ensure these fused scores are consistent with a known input score definition. We derive fusion formulae for the case of input scores based on false acceptance rates. We provide examples to highlight implementation issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信