曲线与曲面排列的组合复杂度界

K. Clarkson, M. Sharir
{"title":"曲线与曲面排列的组合复杂度界","authors":"K. Clarkson, M. Sharir","doi":"10.1109/SFCS.1988.21973","DOIUrl":null,"url":null,"abstract":"The authors study both the incidence counting and the many-faces problem for various kinds of curves, including lines, pseudolines, unit circles, general circles, and pseudocircles. They also extend the analysis to three dimensions, where they concentrate on the case of spheres, which is relevant for the three-dimensional unit-distance problem. They obtain upper bounds for certain quantities. The authors believe that the techniques they use are of independent interest.<<ETX>>","PeriodicalId":113255,"journal":{"name":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Combinatorial complexity bounds for arrangements of curves and surfaces\",\"authors\":\"K. Clarkson, M. Sharir\",\"doi\":\"10.1109/SFCS.1988.21973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors study both the incidence counting and the many-faces problem for various kinds of curves, including lines, pseudolines, unit circles, general circles, and pseudocircles. They also extend the analysis to three dimensions, where they concentrate on the case of spheres, which is relevant for the three-dimensional unit-distance problem. They obtain upper bounds for certain quantities. The authors believe that the techniques they use are of independent interest.<<ETX>>\",\"PeriodicalId\":113255,\"journal\":{\"name\":\"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1988.21973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1988.21973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

摘要

研究了直线、伪直线、单位圆、一般圆和伪圆等各种曲线的发生率计数和多面问题。他们还将分析扩展到三维,在那里他们专注于球体的情况,这与三维单位距离问题有关。他们得到了某些量的上界。作者认为,他们使用的技术是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial complexity bounds for arrangements of curves and surfaces
The authors study both the incidence counting and the many-faces problem for various kinds of curves, including lines, pseudolines, unit circles, general circles, and pseudocircles. They also extend the analysis to three dimensions, where they concentrate on the case of spheres, which is relevant for the three-dimensional unit-distance problem. They obtain upper bounds for certain quantities. The authors believe that the techniques they use are of independent interest.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信