{"title":"一种自动混合热水系统的设计","authors":"P. Maine, O. M. Longe","doi":"10.1109/PowerAfrica49420.2020.9219821","DOIUrl":null,"url":null,"abstract":"Heating, Ventilating and Air-conditioning (HVAC) accounts for about 30-50% of energy consumption and expenditure in residential premises. Hence, the need to meet this essential demand affordably and in an environmentally friendly manner. Therefore, an automatic hybrid water heating system (AHWHS) is proposed in this work, to heat up water for bathroom and kitchen use, using power supply from either the utility grid or an installed solar panel depending on certain factors such as availability and cost of solar resource, availability and cost of utility grid supply, water demand by consumers, etc. The AHWHS was designed and constructed by charging a battery from either the utility grid or solar panel, which then powers the direct current coil element to heat up the water needed for use in the home. The AHWHS was found to reduce household energy expenditure by 68.33% and 71.59% during low and high demand seasons respectively.","PeriodicalId":325937,"journal":{"name":"2020 IEEE PES/IAS PowerAfrica","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of an Automatic Hybrid Water Heating System\",\"authors\":\"P. Maine, O. M. Longe\",\"doi\":\"10.1109/PowerAfrica49420.2020.9219821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heating, Ventilating and Air-conditioning (HVAC) accounts for about 30-50% of energy consumption and expenditure in residential premises. Hence, the need to meet this essential demand affordably and in an environmentally friendly manner. Therefore, an automatic hybrid water heating system (AHWHS) is proposed in this work, to heat up water for bathroom and kitchen use, using power supply from either the utility grid or an installed solar panel depending on certain factors such as availability and cost of solar resource, availability and cost of utility grid supply, water demand by consumers, etc. The AHWHS was designed and constructed by charging a battery from either the utility grid or solar panel, which then powers the direct current coil element to heat up the water needed for use in the home. The AHWHS was found to reduce household energy expenditure by 68.33% and 71.59% during low and high demand seasons respectively.\",\"PeriodicalId\":325937,\"journal\":{\"name\":\"2020 IEEE PES/IAS PowerAfrica\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE PES/IAS PowerAfrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerAfrica49420.2020.9219821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica49420.2020.9219821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of an Automatic Hybrid Water Heating System
Heating, Ventilating and Air-conditioning (HVAC) accounts for about 30-50% of energy consumption and expenditure in residential premises. Hence, the need to meet this essential demand affordably and in an environmentally friendly manner. Therefore, an automatic hybrid water heating system (AHWHS) is proposed in this work, to heat up water for bathroom and kitchen use, using power supply from either the utility grid or an installed solar panel depending on certain factors such as availability and cost of solar resource, availability and cost of utility grid supply, water demand by consumers, etc. The AHWHS was designed and constructed by charging a battery from either the utility grid or solar panel, which then powers the direct current coil element to heat up the water needed for use in the home. The AHWHS was found to reduce household energy expenditure by 68.33% and 71.59% during low and high demand seasons respectively.