一种新型数字距离中继算法的设计、实现及性能评价

D. Waikar, A.C. Liew
{"title":"一种新型数字距离中继算法的设计、实现及性能评价","authors":"D. Waikar, A.C. Liew","doi":"10.1109/PICA.1995.515272","DOIUrl":null,"url":null,"abstract":"This paper presents the design, simulation, implementation and performance evaluation of a computationally efficient and accurate digital distance relaying algorithm. Published historical data were used in the first phase for validation purposes. Sample results illustrating highly accurate fault impedance estimates for various conditions are reported. The second phase uses voltage and current signals generated by the Alternative Transients Program (ATP) and a sample power system for various first-zone, second-zone and third-zone faults. Results of these studies, confirming the stability and computational efficiency of the algorithm, are presented and discussed. In the third phase, a prototype of the relay was developed and tested using real-time fault data generated from physical models of the transmission lines. Oscillographs for these conditions were recorded. Results of these tests indicating high speed relay operation are also discussed. The performance evaluation studies reported in this paper conclusively demonstrate that the new algorithm provides fast and accurate fault impedance estimates for the three-zone protection of transmission lines.","PeriodicalId":294493,"journal":{"name":"Proceedings of Power Industry Computer Applications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Design, implementation and performance evaluation of a new digital distance relaying algorithm\",\"authors\":\"D. Waikar, A.C. Liew\",\"doi\":\"10.1109/PICA.1995.515272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design, simulation, implementation and performance evaluation of a computationally efficient and accurate digital distance relaying algorithm. Published historical data were used in the first phase for validation purposes. Sample results illustrating highly accurate fault impedance estimates for various conditions are reported. The second phase uses voltage and current signals generated by the Alternative Transients Program (ATP) and a sample power system for various first-zone, second-zone and third-zone faults. Results of these studies, confirming the stability and computational efficiency of the algorithm, are presented and discussed. In the third phase, a prototype of the relay was developed and tested using real-time fault data generated from physical models of the transmission lines. Oscillographs for these conditions were recorded. Results of these tests indicating high speed relay operation are also discussed. The performance evaluation studies reported in this paper conclusively demonstrate that the new algorithm provides fast and accurate fault impedance estimates for the three-zone protection of transmission lines.\",\"PeriodicalId\":294493,\"journal\":{\"name\":\"Proceedings of Power Industry Computer Applications Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Power Industry Computer Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICA.1995.515272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Power Industry Computer Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1995.515272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文介绍了一种计算效率高、精度高的数字距离中继算法的设计、仿真、实现和性能评价。为了验证目的,在第一阶段使用了已发布的历史数据。样本结果说明了各种条件下高精度的故障阻抗估计。第二阶段使用由备选暂态程序(ATP)产生的电压和电流信号,以及用于各种第一区、第二区和第三区故障的样本电力系统。这些研究结果证实了该算法的稳定性和计算效率,并进行了讨论。在第三阶段,开发了继电器的原型,并使用从输电线路的物理模型生成的实时故障数据进行了测试。记录了这些条件下的示波器。本文还讨论了高速继电器运行的试验结果。本文的性能评估研究表明,该算法为输电线路三区保护提供了快速、准确的故障阻抗估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, implementation and performance evaluation of a new digital distance relaying algorithm
This paper presents the design, simulation, implementation and performance evaluation of a computationally efficient and accurate digital distance relaying algorithm. Published historical data were used in the first phase for validation purposes. Sample results illustrating highly accurate fault impedance estimates for various conditions are reported. The second phase uses voltage and current signals generated by the Alternative Transients Program (ATP) and a sample power system for various first-zone, second-zone and third-zone faults. Results of these studies, confirming the stability and computational efficiency of the algorithm, are presented and discussed. In the third phase, a prototype of the relay was developed and tested using real-time fault data generated from physical models of the transmission lines. Oscillographs for these conditions were recorded. Results of these tests indicating high speed relay operation are also discussed. The performance evaluation studies reported in this paper conclusively demonstrate that the new algorithm provides fast and accurate fault impedance estimates for the three-zone protection of transmission lines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信