{"title":"HeartBeat模型:一种平台抽象,可以在FPGA上基于noc的MPSoC上快速构建实时应用的原型","authors":"Francesco Robino, Johnny Öberg","doi":"10.1109/ReCoSoC.2013.6581536","DOIUrl":null,"url":null,"abstract":"Future embedded systems will make use of many hundred, configurable or re-configurable, processing elements communicating through a network on chip (NoC), but there is lack of rapid automated design flows bridging the abstraction gap between the models of such systems and their implementation. Designing and programming NoC-based MPSoCs is a complex and error prone activity. However, capturing the design specification at a higher-level of abstraction using models based on models of computation (MoCs) offers a promising way of reducing design flaws at an early stage in the design flow. In this paper, we present the HeartBeat model, a concept for implementing applications based on the synchronous model of computation onto a NoC-based MPSoC platform on FPGA. Furthermore, we show that a platform complying to the constraints imposed by the HeartBeat model has real-time properties. The presented design flow significantly reduces the design time of a real-time embedded system implemented on a NoCbased MPSoC platform, enabling rapid design space exploration through fast prototyping of the solution.","PeriodicalId":354964,"journal":{"name":"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The HeartBeat model: A platform abstraction enabling fast prototyping of real-time applications on NoC-based MPSoC on FPGA\",\"authors\":\"Francesco Robino, Johnny Öberg\",\"doi\":\"10.1109/ReCoSoC.2013.6581536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future embedded systems will make use of many hundred, configurable or re-configurable, processing elements communicating through a network on chip (NoC), but there is lack of rapid automated design flows bridging the abstraction gap between the models of such systems and their implementation. Designing and programming NoC-based MPSoCs is a complex and error prone activity. However, capturing the design specification at a higher-level of abstraction using models based on models of computation (MoCs) offers a promising way of reducing design flaws at an early stage in the design flow. In this paper, we present the HeartBeat model, a concept for implementing applications based on the synchronous model of computation onto a NoC-based MPSoC platform on FPGA. Furthermore, we show that a platform complying to the constraints imposed by the HeartBeat model has real-time properties. The presented design flow significantly reduces the design time of a real-time embedded system implemented on a NoCbased MPSoC platform, enabling rapid design space exploration through fast prototyping of the solution.\",\"PeriodicalId\":354964,\"journal\":{\"name\":\"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReCoSoC.2013.6581536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReCoSoC.2013.6581536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The HeartBeat model: A platform abstraction enabling fast prototyping of real-time applications on NoC-based MPSoC on FPGA
Future embedded systems will make use of many hundred, configurable or re-configurable, processing elements communicating through a network on chip (NoC), but there is lack of rapid automated design flows bridging the abstraction gap between the models of such systems and their implementation. Designing and programming NoC-based MPSoCs is a complex and error prone activity. However, capturing the design specification at a higher-level of abstraction using models based on models of computation (MoCs) offers a promising way of reducing design flaws at an early stage in the design flow. In this paper, we present the HeartBeat model, a concept for implementing applications based on the synchronous model of computation onto a NoC-based MPSoC platform on FPGA. Furthermore, we show that a platform complying to the constraints imposed by the HeartBeat model has real-time properties. The presented design flow significantly reduces the design time of a real-time embedded system implemented on a NoCbased MPSoC platform, enabling rapid design space exploration through fast prototyping of the solution.