在人工智能中问“为什么”:智能系统的可解释性——观点和挑战

A. Preece
{"title":"在人工智能中问“为什么”:智能系统的可解释性——观点和挑战","authors":"A. Preece","doi":"10.1002/ISAF.1422","DOIUrl":null,"url":null,"abstract":"Recent rapid progress in machine learning (ML), particularly so†called ‘deep learning’, has led to a resurgence in interest in explainability of artificial intelligence (AI) systems, reviving an area of research dating back to the 1970s. The aim of this article is to view current issues concerning ML†based AI systems from the perspective of classical AI, showing that the fundamental problems are far from new, and arguing that elements of that earlier work offer routes to making progress towards explainable AI today.","PeriodicalId":153549,"journal":{"name":"Intell. Syst. Account. Finance Manag.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"Asking 'Why' in AI: Explainability of intelligent systems - perspectives and challenges\",\"authors\":\"A. Preece\",\"doi\":\"10.1002/ISAF.1422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent rapid progress in machine learning (ML), particularly so†called ‘deep learning’, has led to a resurgence in interest in explainability of artificial intelligence (AI) systems, reviving an area of research dating back to the 1970s. The aim of this article is to view current issues concerning ML†based AI systems from the perspective of classical AI, showing that the fundamental problems are far from new, and arguing that elements of that earlier work offer routes to making progress towards explainable AI today.\",\"PeriodicalId\":153549,\"journal\":{\"name\":\"Intell. Syst. Account. Finance Manag.\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intell. Syst. Account. Finance Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ISAF.1422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intell. Syst. Account. Finance Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ISAF.1422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

摘要

最近机器学习(ML)的快速发展,特别是深度学习(深度学习),导致人们对人工智能(AI)系统的可解释性的兴趣重新燃起,这一研究领域可以追溯到20世纪70年代。本文的目的是从经典人工智能的角度来看待当前关于基于ml - 的人工智能系统的问题,表明基本问题远非新问题,并认为早期工作的元素为今天的可解释人工智能取得进展提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asking 'Why' in AI: Explainability of intelligent systems - perspectives and challenges
Recent rapid progress in machine learning (ML), particularly so†called ‘deep learning’, has led to a resurgence in interest in explainability of artificial intelligence (AI) systems, reviving an area of research dating back to the 1970s. The aim of this article is to view current issues concerning ML†based AI systems from the perspective of classical AI, showing that the fundamental problems are far from new, and arguing that elements of that earlier work offer routes to making progress towards explainable AI today.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信