一种基于运动趋势的容延迟移动传感器网络自适应数据传输方案

Fulong Xu, Ming Liu, Jiannong Cao, Guihai Chen, Hai-gang Gong, Jinqi Zhu
{"title":"一种基于运动趋势的容延迟移动传感器网络自适应数据传输方案","authors":"Fulong Xu, Ming Liu, Jiannong Cao, Guihai Chen, Hai-gang Gong, Jinqi Zhu","doi":"10.1109/GLOCOM.2009.5425709","DOIUrl":null,"url":null,"abstract":"The Delay Tolerant Mobile Sensor Network (DTMSN) is a new type of sensor network for pervasive information gathering. Although similar to conventional sensor networks in hardware components, DTMSN owns some unique characteristics such as sensor mobility, intermittent connectivity, etc. Therefore, traditional data gathering methods can not be applied to DTMSN. In this paper, we propose an efficient Motion Tendency-based Data Delivery Scheme (MTAD) tailored for DTMSN. By using sink broadcast instead of GPS, MTAD obtains the information about the nodal motion tendency with small overhead. The information can then be used to evaluate the node's effective delivery ability and provide guidance for message transmission. MTAD also employs the message survival time to effectively manage message queues. Our simulation results show that, compared with other DTMSN data delivering approaches, MTAD achieves not only a relatively longer network lifetime but also a higher message delivery ratio with lower transmission overhead and data delivery delay.","PeriodicalId":405624,"journal":{"name":"GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Motion Tendency-Based Adaptive Data Delivery Scheme for Delay Tolerant Mobile Sensor Networks\",\"authors\":\"Fulong Xu, Ming Liu, Jiannong Cao, Guihai Chen, Hai-gang Gong, Jinqi Zhu\",\"doi\":\"10.1109/GLOCOM.2009.5425709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Delay Tolerant Mobile Sensor Network (DTMSN) is a new type of sensor network for pervasive information gathering. Although similar to conventional sensor networks in hardware components, DTMSN owns some unique characteristics such as sensor mobility, intermittent connectivity, etc. Therefore, traditional data gathering methods can not be applied to DTMSN. In this paper, we propose an efficient Motion Tendency-based Data Delivery Scheme (MTAD) tailored for DTMSN. By using sink broadcast instead of GPS, MTAD obtains the information about the nodal motion tendency with small overhead. The information can then be used to evaluate the node's effective delivery ability and provide guidance for message transmission. MTAD also employs the message survival time to effectively manage message queues. Our simulation results show that, compared with other DTMSN data delivering approaches, MTAD achieves not only a relatively longer network lifetime but also a higher message delivery ratio with lower transmission overhead and data delivery delay.\",\"PeriodicalId\":405624,\"journal\":{\"name\":\"GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2009.5425709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2009.5425709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

容延迟移动传感器网络(DTMSN)是一种面向普适信息采集的新型传感器网络。DTMSN虽然在硬件组成上与传统传感器网络相似,但具有传感器移动性、间歇性连接等独特的特点。因此,传统的数据采集方法不能应用于DTMSN。在本文中,我们提出了一种针对DTMSN的高效的基于运动趋势的数据传输方案(MTAD)。MTAD通过接收广播代替GPS,以较小的开销获取节点运动趋势信息。然后,这些信息可用于评估节点的有效传递能力,并为消息传输提供指导。MTAD还使用消息生存时间来有效地管理消息队列。仿真结果表明,与其他DTMSN数据传递方法相比,MTAD不仅具有较长的网络生存期,而且具有较高的消息传递率和较低的传输开销和数据传递延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Motion Tendency-Based Adaptive Data Delivery Scheme for Delay Tolerant Mobile Sensor Networks
The Delay Tolerant Mobile Sensor Network (DTMSN) is a new type of sensor network for pervasive information gathering. Although similar to conventional sensor networks in hardware components, DTMSN owns some unique characteristics such as sensor mobility, intermittent connectivity, etc. Therefore, traditional data gathering methods can not be applied to DTMSN. In this paper, we propose an efficient Motion Tendency-based Data Delivery Scheme (MTAD) tailored for DTMSN. By using sink broadcast instead of GPS, MTAD obtains the information about the nodal motion tendency with small overhead. The information can then be used to evaluate the node's effective delivery ability and provide guidance for message transmission. MTAD also employs the message survival time to effectively manage message queues. Our simulation results show that, compared with other DTMSN data delivering approaches, MTAD achieves not only a relatively longer network lifetime but also a higher message delivery ratio with lower transmission overhead and data delivery delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信