Björn Barrois, Stela Hristova, C. Wohler, F. Kummert, Christoph Hermes
{"title":"使用立体摄像机对车辆进行三维姿态估计","authors":"Björn Barrois, Stela Hristova, C. Wohler, F. Kummert, Christoph Hermes","doi":"10.1109/IVS.2009.5164289","DOIUrl":null,"url":null,"abstract":"This study introduces an approach to three-dimensional vehicle pose estimation using a stereo camera system. After computation of stereo and optical flow on the investigated scene, a four-dimensional clustering approach separates the static from the moving objects in the scene. The iterative closest point algorithm (ICP) estimates the vehicle pose using a cuboid as a weak vehicle model. In contrast to classical ICP optimisation a polar distance metric is used which especially takes into account the error distribution of the stereo measurement process. The tracking approach is based on tracking-by-detection such that no temporal filtering is used. The method is evaluated on seven different real-world sequences, where different stereo algorithms, baseline distances, distance metrics, and optimisation algorithms are examined. The results show that the proposed polar distance metric yields a higher accuracy for yaw angle estimation of vehicles than the common Euclidean distance metric, especially when using pixel-accurate stereo points.","PeriodicalId":396749,"journal":{"name":"2009 IEEE Intelligent Vehicles Symposium","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"3D pose estimation of vehicles using a stereo camera\",\"authors\":\"Björn Barrois, Stela Hristova, C. Wohler, F. Kummert, Christoph Hermes\",\"doi\":\"10.1109/IVS.2009.5164289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces an approach to three-dimensional vehicle pose estimation using a stereo camera system. After computation of stereo and optical flow on the investigated scene, a four-dimensional clustering approach separates the static from the moving objects in the scene. The iterative closest point algorithm (ICP) estimates the vehicle pose using a cuboid as a weak vehicle model. In contrast to classical ICP optimisation a polar distance metric is used which especially takes into account the error distribution of the stereo measurement process. The tracking approach is based on tracking-by-detection such that no temporal filtering is used. The method is evaluated on seven different real-world sequences, where different stereo algorithms, baseline distances, distance metrics, and optimisation algorithms are examined. The results show that the proposed polar distance metric yields a higher accuracy for yaw angle estimation of vehicles than the common Euclidean distance metric, especially when using pixel-accurate stereo points.\",\"PeriodicalId\":396749,\"journal\":{\"name\":\"2009 IEEE Intelligent Vehicles Symposium\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2009.5164289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2009.5164289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D pose estimation of vehicles using a stereo camera
This study introduces an approach to three-dimensional vehicle pose estimation using a stereo camera system. After computation of stereo and optical flow on the investigated scene, a four-dimensional clustering approach separates the static from the moving objects in the scene. The iterative closest point algorithm (ICP) estimates the vehicle pose using a cuboid as a weak vehicle model. In contrast to classical ICP optimisation a polar distance metric is used which especially takes into account the error distribution of the stereo measurement process. The tracking approach is based on tracking-by-detection such that no temporal filtering is used. The method is evaluated on seven different real-world sequences, where different stereo algorithms, baseline distances, distance metrics, and optimisation algorithms are examined. The results show that the proposed polar distance metric yields a higher accuracy for yaw angle estimation of vehicles than the common Euclidean distance metric, especially when using pixel-accurate stereo points.