具有强平滑器的混合精度gpu -多网格求解器

Dominik Göddeke, R. Strzodka
{"title":"具有强平滑器的混合精度gpu -多网格求解器","authors":"Dominik Göddeke, R. Strzodka","doi":"10.1201/B10376-11","DOIUrl":null,"url":null,"abstract":"• Sparse iterative linear solvers are the most important building block in (implicit) schemes for PDE problems • In FD, FV and FE discretisations • Lots of research on GPUs so far for Krylov subspace methods, ADI approaches and multigrid • But: Limited to simple preconditioners and smoothing operators •Numerically strong smoothers exhibit inherently sequential data dependencies (impossible to parallelise?) • Strong smoothers required in practice: Anisotropies (mesh, operator), localised nonlinearities from the PDEs etc. increase ill-conditioning of the systems drastically •Multigrid is asymptotically optimal, all other iterative schemes suffer from h-dependencies • In our context: Multigrid = geometric multigrid","PeriodicalId":411793,"journal":{"name":"Scientific Computing with Multicore and Accelerators","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Mixed-Precision GPU-Multigrid Solvers with Strong Smoothers\",\"authors\":\"Dominik Göddeke, R. Strzodka\",\"doi\":\"10.1201/B10376-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"• Sparse iterative linear solvers are the most important building block in (implicit) schemes for PDE problems • In FD, FV and FE discretisations • Lots of research on GPUs so far for Krylov subspace methods, ADI approaches and multigrid • But: Limited to simple preconditioners and smoothing operators •Numerically strong smoothers exhibit inherently sequential data dependencies (impossible to parallelise?) • Strong smoothers required in practice: Anisotropies (mesh, operator), localised nonlinearities from the PDEs etc. increase ill-conditioning of the systems drastically •Multigrid is asymptotically optimal, all other iterative schemes suffer from h-dependencies • In our context: Multigrid = geometric multigrid\",\"PeriodicalId\":411793,\"journal\":{\"name\":\"Scientific Computing with Multicore and Accelerators\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Computing with Multicore and Accelerators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/B10376-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Computing with Multicore and Accelerators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/B10376-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

•稀疏迭代线性求解器是PDE问题(隐式)方案中最重要的构建块•在FD, FV和FE离散中•迄今为止对gpu的大量研究用于Krylov子空间方法,ADI方法和多网格•但是:仅限于简单的预调节器和平滑算子•数值强平滑器表现出固有的顺序数据依赖性(不可能并行化?)•实践中需要的强平滑器:各向异性(网格、算子)、偏微分方程的局部非线性等极大地增加了系统的病态性•多重网格是渐近最优的,所有其他迭代方案都受到h依赖关系的影响•在我们的上下文中:多重网格=几何多重网格
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed-Precision GPU-Multigrid Solvers with Strong Smoothers
• Sparse iterative linear solvers are the most important building block in (implicit) schemes for PDE problems • In FD, FV and FE discretisations • Lots of research on GPUs so far for Krylov subspace methods, ADI approaches and multigrid • But: Limited to simple preconditioners and smoothing operators •Numerically strong smoothers exhibit inherently sequential data dependencies (impossible to parallelise?) • Strong smoothers required in practice: Anisotropies (mesh, operator), localised nonlinearities from the PDEs etc. increase ill-conditioning of the systems drastically •Multigrid is asymptotically optimal, all other iterative schemes suffer from h-dependencies • In our context: Multigrid = geometric multigrid
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信