扩频信号的crc辅助擦除解调性能研究

Y. Sanada, Takumi Ono
{"title":"扩频信号的crc辅助擦除解调性能研究","authors":"Y. Sanada, Takumi Ono","doi":"10.1109/APWCS50173.2021.9548725","DOIUrl":null,"url":null,"abstract":"In this paper, erasure demodulation for an M-ary chirp spread spectrum signal is proposed. This demodulation scheme is assumed to be implemented in IoT devices to receive a deactivation command. In the erasure demodulation scheme a demodulator regards bit elements in a coded bit sequence as erasure if the corresponding correlator output is larger than a threshold and they are different from bit elements in a coded bit sequence for the maximum correlator output. Those erasure bits are treated as both \"0\" and \"1\" and cyclic redundancy check (CRC) decoding following the erasure demodulation checks which output is correct. As one of those outputs must be the same as the transmit coded bit, block error rate (BLER) performance improves. Even though the erasure demodulation increases the probability of false alarm, it can reduce the miss probability of deactivation. On the other hand, as the number of erasure bits increases, the number of CRC decoding operations grows exponentially and the probability of CRC miss detection also increases. Thus, the threshold level has to be decided according to the computational capability of each IoT device, the target BLER, and the probability of CRC miss detection. The performance of CRC miss detection and the BLER on a Rayleigh fading channel, a Rician fading channel, and a Vehicular-B channel are evaluated through computer simulation. Furthermore, cumulative distribution function curves for the number of erasure bits are also presented for different channel models.","PeriodicalId":164737,"journal":{"name":"2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of CRC-Aided Erasure Demodulation for M-ary Chirp Spread Spectrum Signal\",\"authors\":\"Y. Sanada, Takumi Ono\",\"doi\":\"10.1109/APWCS50173.2021.9548725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, erasure demodulation for an M-ary chirp spread spectrum signal is proposed. This demodulation scheme is assumed to be implemented in IoT devices to receive a deactivation command. In the erasure demodulation scheme a demodulator regards bit elements in a coded bit sequence as erasure if the corresponding correlator output is larger than a threshold and they are different from bit elements in a coded bit sequence for the maximum correlator output. Those erasure bits are treated as both \\\"0\\\" and \\\"1\\\" and cyclic redundancy check (CRC) decoding following the erasure demodulation checks which output is correct. As one of those outputs must be the same as the transmit coded bit, block error rate (BLER) performance improves. Even though the erasure demodulation increases the probability of false alarm, it can reduce the miss probability of deactivation. On the other hand, as the number of erasure bits increases, the number of CRC decoding operations grows exponentially and the probability of CRC miss detection also increases. Thus, the threshold level has to be decided according to the computational capability of each IoT device, the target BLER, and the probability of CRC miss detection. The performance of CRC miss detection and the BLER on a Rayleigh fading channel, a Rician fading channel, and a Vehicular-B channel are evaluated through computer simulation. Furthermore, cumulative distribution function curves for the number of erasure bits are also presented for different channel models.\",\"PeriodicalId\":164737,\"journal\":{\"name\":\"2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APWCS50173.2021.9548725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWCS50173.2021.9548725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种m波段啁啾扩频信号的擦除解调方法。这种解调方案被认为是在物联网设备中实现的,以接收去激活命令。在擦除解调方案中,如果相应的相关器输出大于阈值并且它们与最大相关器输出的编码位序列中的位元素不同,则解调器将编码位序列中的位元素视为擦除。这些擦除位被视为“0”和“1”,并在擦除解调检查哪个输出是正确的之后进行循环冗余检查(CRC)解码。由于其中一个输出必须与发送编码位相同,因此块错误率(BLER)性能得到了提高。尽管擦除解调增加了虚警的概率,但它可以降低失活的概率。另一方面,随着擦除比特数的增加,CRC解码操作的次数呈指数增长,CRC漏检的概率也随之增加。因此,阈值水平必须根据每个物联网设备的计算能力、目标BLER和CRC未检出概率来确定。通过计算机仿真,对Rayleigh衰落信道、ricr衰落信道和vehicle - b信道上的CRC脱失检测和BLER的性能进行了评价。此外,还给出了不同信道模型下擦除比特数的累积分布函数曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of CRC-Aided Erasure Demodulation for M-ary Chirp Spread Spectrum Signal
In this paper, erasure demodulation for an M-ary chirp spread spectrum signal is proposed. This demodulation scheme is assumed to be implemented in IoT devices to receive a deactivation command. In the erasure demodulation scheme a demodulator regards bit elements in a coded bit sequence as erasure if the corresponding correlator output is larger than a threshold and they are different from bit elements in a coded bit sequence for the maximum correlator output. Those erasure bits are treated as both "0" and "1" and cyclic redundancy check (CRC) decoding following the erasure demodulation checks which output is correct. As one of those outputs must be the same as the transmit coded bit, block error rate (BLER) performance improves. Even though the erasure demodulation increases the probability of false alarm, it can reduce the miss probability of deactivation. On the other hand, as the number of erasure bits increases, the number of CRC decoding operations grows exponentially and the probability of CRC miss detection also increases. Thus, the threshold level has to be decided according to the computational capability of each IoT device, the target BLER, and the probability of CRC miss detection. The performance of CRC miss detection and the BLER on a Rayleigh fading channel, a Rician fading channel, and a Vehicular-B channel are evaluated through computer simulation. Furthermore, cumulative distribution function curves for the number of erasure bits are also presented for different channel models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信