超级计算机上的克雷洛夫子空间方法

Y. Saad
{"title":"超级计算机上的克雷洛夫子空间方法","authors":"Y. Saad","doi":"10.1137/0910073","DOIUrl":null,"url":null,"abstract":"This paper presents a short survey of recent research on Krylov subspace methods with emphasis on implementation on vector and parallel computers. Conjugate gradient methods have proven very useful on traditional scalar computers, and their popularity is likely to increase as three-dimensional models gain importance. A conservative approach to derive effective iterative techniques for supercomputers has been to find efficient parallel/vector implementations of the standard algorithms. The main source of difficulty in the incomplete factorization preconditionings is in the solution of the triangular systems at each step. A few approaches consisting of implementing efficient forward and backward triangular solutions are described in detail. Then polynomial preconditioning as an alternative to standard incomplete factorization techniques is discussed. Another efficient approach is to reorder the equations so as to improve the structure of the matrix to achieve better parallelism or vectorization. An overview of these ideas and others is given in this article, as well as an attempt to comment on their effectiveness or potential for different types of architectures.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"286","resultStr":"{\"title\":\"Krylov Subspace Methods on Supercomputers\",\"authors\":\"Y. Saad\",\"doi\":\"10.1137/0910073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a short survey of recent research on Krylov subspace methods with emphasis on implementation on vector and parallel computers. Conjugate gradient methods have proven very useful on traditional scalar computers, and their popularity is likely to increase as three-dimensional models gain importance. A conservative approach to derive effective iterative techniques for supercomputers has been to find efficient parallel/vector implementations of the standard algorithms. The main source of difficulty in the incomplete factorization preconditionings is in the solution of the triangular systems at each step. A few approaches consisting of implementing efficient forward and backward triangular solutions are described in detail. Then polynomial preconditioning as an alternative to standard incomplete factorization techniques is discussed. Another efficient approach is to reorder the equations so as to improve the structure of the matrix to achieve better parallelism or vectorization. An overview of these ideas and others is given in this article, as well as an attempt to comment on their effectiveness or potential for different types of architectures.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"286\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0910073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 286

摘要

本文简要介绍了近年来关于Krylov子空间方法的研究进展,重点介绍了在矢量计算机和并行计算机上的实现。共轭梯度方法在传统的标量计算机上已经被证明是非常有用的,随着三维模型的重要性,它们的普及可能会增加。为超级计算机推导有效迭代技术的保守方法是找到标准算法的有效并行/矢量实现。不完全分解预条件的主要难点在于每一步三角系统的解。详细介绍了几种有效的前向和后向三角解的实现方法。然后讨论了多项式预处理作为标准不完全分解技术的替代方法。另一种有效的方法是对方程进行重新排序,从而改进矩阵的结构,以达到更好的并行性或向量化。本文概述了这些想法和其他想法,并尝试评论它们对不同类型架构的有效性或潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Krylov Subspace Methods on Supercomputers
This paper presents a short survey of recent research on Krylov subspace methods with emphasis on implementation on vector and parallel computers. Conjugate gradient methods have proven very useful on traditional scalar computers, and their popularity is likely to increase as three-dimensional models gain importance. A conservative approach to derive effective iterative techniques for supercomputers has been to find efficient parallel/vector implementations of the standard algorithms. The main source of difficulty in the incomplete factorization preconditionings is in the solution of the triangular systems at each step. A few approaches consisting of implementing efficient forward and backward triangular solutions are described in detail. Then polynomial preconditioning as an alternative to standard incomplete factorization techniques is discussed. Another efficient approach is to reorder the equations so as to improve the structure of the matrix to achieve better parallelism or vectorization. An overview of these ideas and others is given in this article, as well as an attempt to comment on their effectiveness or potential for different types of architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信