基于正交局域判别嵌入的文档分类

Ziqiang Wang, Xia Sun
{"title":"基于正交局域判别嵌入的文档分类","authors":"Ziqiang Wang, Xia Sun","doi":"10.1109/BICTA.2009.5338132","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction algorithms, which try to reduce the dimensionality of data and to enhance the discriminant information, are of paramount importance in document classification. In this paper, a novel dimensionality reduction algorithm called orthogonal locality discriminant embedding (OLDE) is proposed to address these problems. The OLDE algorithm effectively combines the idea of local discriminant embedding (LDE) and orthogonal basis functions, which utilizes both the local manifold structure and label information to enhance discriminative power. Extensive experiments on three document databases show the effectiveness of the proposed OLDE algorithm.","PeriodicalId":161787,"journal":{"name":"2009 Fourth International on Conference on Bio-Inspired Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal locality discriminant embedding for document classification\",\"authors\":\"Ziqiang Wang, Xia Sun\",\"doi\":\"10.1109/BICTA.2009.5338132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimensionality reduction algorithms, which try to reduce the dimensionality of data and to enhance the discriminant information, are of paramount importance in document classification. In this paper, a novel dimensionality reduction algorithm called orthogonal locality discriminant embedding (OLDE) is proposed to address these problems. The OLDE algorithm effectively combines the idea of local discriminant embedding (LDE) and orthogonal basis functions, which utilizes both the local manifold structure and label information to enhance discriminative power. Extensive experiments on three document databases show the effectiveness of the proposed OLDE algorithm.\",\"PeriodicalId\":161787,\"journal\":{\"name\":\"2009 Fourth International on Conference on Bio-Inspired Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth International on Conference on Bio-Inspired Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2009.5338132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International on Conference on Bio-Inspired Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2009.5338132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

降维算法在文档分类中具有非常重要的意义,它试图降低数据的维数,增强识别信息。本文提出了一种新的降维算法——正交局域判别嵌入(OLDE)来解决这些问题。OLDE算法有效地将局部判别嵌入(LDE)思想与正交基函数相结合,利用局部流形结构和标记信息来增强识别能力。在三个文档数据库上的大量实验表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal locality discriminant embedding for document classification
Dimensionality reduction algorithms, which try to reduce the dimensionality of data and to enhance the discriminant information, are of paramount importance in document classification. In this paper, a novel dimensionality reduction algorithm called orthogonal locality discriminant embedding (OLDE) is proposed to address these problems. The OLDE algorithm effectively combines the idea of local discriminant embedding (LDE) and orthogonal basis functions, which utilizes both the local manifold structure and label information to enhance discriminative power. Extensive experiments on three document databases show the effectiveness of the proposed OLDE algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信