一种有效分类12导联心电信号采集质量的自动机器学习方法

Vandemberg M. O. Júnior, Vitor R. Evangelista, R. Baronetti, Vinicius R. Uemoto, D. Gomes, M. F. N. De Marchi, R. V. Freitas, J. P. Madeiro
{"title":"一种有效分类12导联心电信号采集质量的自动机器学习方法","authors":"Vandemberg M. O. Júnior, Vitor R. Evangelista, R. Baronetti, Vinicius R. Uemoto, D. Gomes, M. F. N. De Marchi, R. V. Freitas, J. P. Madeiro","doi":"10.5753/sbcas.2023.229594","DOIUrl":null,"url":null,"abstract":"Given their low cost and non-invasive nature, ElectroCardioGram (ECG) signals have been widely used as a useful tool for diagnosing heart diseases. However, acquisition issues such as electrode interchange and oscillation noise may negatively impact expert exam interpretation and even automatic classification tasks. Here we propose an automated machine learning method to efficiently classify the 12-lead ECG signal acquisition quality. It consists of a two-stage classification process. Firstly, the ECG signals are processed and segmented aiming to classify them as noisy or acceptable signals. Then, the second classification stage yields the binary classification correct acquisition or limb electrodes interchange. Concerning the electrode positioning, the Random Forest technique presented interesting results (precision of 97%, recall of 89%, and F1-Score of 93%). Concerning noise detection, Random Forest presented a general accuracy of 85%, a recall of 57%, and a precision of 91%. All the obtained results yield to consider the proposed framework for application within a real telemedicine environment.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Automated Machine Learning Method to Efficiently Classify the 12-lead ECG Signal Acquisition Quality\",\"authors\":\"Vandemberg M. O. Júnior, Vitor R. Evangelista, R. Baronetti, Vinicius R. Uemoto, D. Gomes, M. F. N. De Marchi, R. V. Freitas, J. P. Madeiro\",\"doi\":\"10.5753/sbcas.2023.229594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given their low cost and non-invasive nature, ElectroCardioGram (ECG) signals have been widely used as a useful tool for diagnosing heart diseases. However, acquisition issues such as electrode interchange and oscillation noise may negatively impact expert exam interpretation and even automatic classification tasks. Here we propose an automated machine learning method to efficiently classify the 12-lead ECG signal acquisition quality. It consists of a two-stage classification process. Firstly, the ECG signals are processed and segmented aiming to classify them as noisy or acceptable signals. Then, the second classification stage yields the binary classification correct acquisition or limb electrodes interchange. Concerning the electrode positioning, the Random Forest technique presented interesting results (precision of 97%, recall of 89%, and F1-Score of 93%). Concerning noise detection, Random Forest presented a general accuracy of 85%, a recall of 57%, and a precision of 91%. All the obtained results yield to consider the proposed framework for application within a real telemedicine environment.\",\"PeriodicalId\":122965,\"journal\":{\"name\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2023.229594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于其低成本和无创性,心电图(ECG)信号已被广泛用作诊断心脏病的有用工具。然而,诸如电极交换和振荡噪声等采集问题可能会对专家考试解释甚至自动分类任务产生负面影响。本文提出一种自动机器学习方法对12导联心电信号采集质量进行有效分类。它包括两个阶段的分类过程。首先对心电信号进行处理和分割,将其分为噪声信号和可接受信号。然后,第二分类阶段产生二元分类正确采集或肢体电极交换。在电极定位方面,随机森林技术呈现出有趣的结果(准确率为97%,召回率为89%,F1-Score为93%)。在噪声检测方面,Random Forest的总体准确率为85%,召回率为57%,精度为91%。所有得到的结果都有助于考虑所提出的框架在实际远程医疗环境中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Automated Machine Learning Method to Efficiently Classify the 12-lead ECG Signal Acquisition Quality
Given their low cost and non-invasive nature, ElectroCardioGram (ECG) signals have been widely used as a useful tool for diagnosing heart diseases. However, acquisition issues such as electrode interchange and oscillation noise may negatively impact expert exam interpretation and even automatic classification tasks. Here we propose an automated machine learning method to efficiently classify the 12-lead ECG signal acquisition quality. It consists of a two-stage classification process. Firstly, the ECG signals are processed and segmented aiming to classify them as noisy or acceptable signals. Then, the second classification stage yields the binary classification correct acquisition or limb electrodes interchange. Concerning the electrode positioning, the Random Forest technique presented interesting results (precision of 97%, recall of 89%, and F1-Score of 93%). Concerning noise detection, Random Forest presented a general accuracy of 85%, a recall of 57%, and a precision of 91%. All the obtained results yield to consider the proposed framework for application within a real telemedicine environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信