具有最佳运输距离的离群点自动检测

Prabhant Singh, J. Vanschoren
{"title":"具有最佳运输距离的离群点自动检测","authors":"Prabhant Singh, J. Vanschoren","doi":"10.24963/ijcai.2023/843","DOIUrl":null,"url":null,"abstract":"Automated machine learning (AutoML) has been widely researched and adopted for supervised problems, but progress in unsupervised settings has been limited. We propose `\"LOTUS\", a novel framework to automate outlier detection based on meta-learning. Our premise is that the selection of the optimal outlier detection technique depends on the inherent properties of the data distribution. We leverage optimal transport to find the dataset with the most similar underlying distribution, and then apply the outlier detection techniques that proved to work best for that data distribution. We evaluate the robustness of our framework and find that it outperforms all state-of-the-art automated outlier detection tools. This approach can also be easily generalized to automate other unsupervised settings.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AutoML for Outlier Detection with Optimal Transport Distances\",\"authors\":\"Prabhant Singh, J. Vanschoren\",\"doi\":\"10.24963/ijcai.2023/843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated machine learning (AutoML) has been widely researched and adopted for supervised problems, but progress in unsupervised settings has been limited. We propose `\\\"LOTUS\\\", a novel framework to automate outlier detection based on meta-learning. Our premise is that the selection of the optimal outlier detection technique depends on the inherent properties of the data distribution. We leverage optimal transport to find the dataset with the most similar underlying distribution, and then apply the outlier detection techniques that proved to work best for that data distribution. We evaluate the robustness of our framework and find that it outperforms all state-of-the-art automated outlier detection tools. This approach can also be easily generalized to automate other unsupervised settings.\",\"PeriodicalId\":394530,\"journal\":{\"name\":\"International Joint Conference on Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Joint Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2023/843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动化机器学习(AutoML)已被广泛研究和应用于有监督问题,但在无监督环境中的进展有限。我们提出了“LOTUS”,这是一个基于元学习的新框架,可以自动检测异常值。我们的前提是,最优离群点检测技术的选择取决于数据分布的固有特性。我们利用最优传输来找到具有最相似底层分布的数据集,然后应用被证明最适合该数据分布的离群值检测技术。我们评估了框架的稳健性,发现它优于所有最先进的自动离群检测工具。这种方法也可以很容易地推广到自动化其他无监督设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AutoML for Outlier Detection with Optimal Transport Distances
Automated machine learning (AutoML) has been widely researched and adopted for supervised problems, but progress in unsupervised settings has been limited. We propose `"LOTUS", a novel framework to automate outlier detection based on meta-learning. Our premise is that the selection of the optimal outlier detection technique depends on the inherent properties of the data distribution. We leverage optimal transport to find the dataset with the most similar underlying distribution, and then apply the outlier detection techniques that proved to work best for that data distribution. We evaluate the robustness of our framework and find that it outperforms all state-of-the-art automated outlier detection tools. This approach can also be easily generalized to automate other unsupervised settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信