为什么选择s型函数

B. Kalman, S. Kwasny
{"title":"为什么选择s型函数","authors":"B. Kalman, S. Kwasny","doi":"10.1109/IJCNN.1992.227257","DOIUrl":null,"url":null,"abstract":"As hardware implementations of backpropagation and related training algorithms are anticipated, the choice of a sigmoidal function should be carefully justified. Attention should focus on choosing an activation function in a neural unit that exhibits the best properties for training. The author argues for the use of the hyperbolic tangent. While the exact shape of the sigmoidal makes little difference once the network is trained, it is shown that it possesses particular properties that make it appealing for use while training. By paying attention to scaling it is illustrated that tanh (1.5*) has the additional advantage of equalizing training over layers. This result can easily generalize to several standard sigmoidal functions commonly in use.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"209","resultStr":"{\"title\":\"Why tanh: choosing a sigmoidal function\",\"authors\":\"B. Kalman, S. Kwasny\",\"doi\":\"10.1109/IJCNN.1992.227257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As hardware implementations of backpropagation and related training algorithms are anticipated, the choice of a sigmoidal function should be carefully justified. Attention should focus on choosing an activation function in a neural unit that exhibits the best properties for training. The author argues for the use of the hyperbolic tangent. While the exact shape of the sigmoidal makes little difference once the network is trained, it is shown that it possesses particular properties that make it appealing for use while training. By paying attention to scaling it is illustrated that tanh (1.5*) has the additional advantage of equalizing training over layers. This result can easily generalize to several standard sigmoidal functions commonly in use.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"209\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.227257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 209

摘要

由于反向传播和相关训练算法的硬件实现是预期的,因此选择s型函数应该仔细地进行论证。应注意在神经单元中选择一个表现出最佳训练特性的激活函数。作者主张使用双曲切线。虽然一旦网络被训练,s型曲线的确切形状几乎没有什么不同,但它显示出它具有特殊的性质,使其在训练时具有吸引力。通过注意缩放,可以看出tanh(1.5*)具有均衡多层训练的额外优势。这个结果可以很容易地推广到常用的几个标准s型函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why tanh: choosing a sigmoidal function
As hardware implementations of backpropagation and related training algorithms are anticipated, the choice of a sigmoidal function should be carefully justified. Attention should focus on choosing an activation function in a neural unit that exhibits the best properties for training. The author argues for the use of the hyperbolic tangent. While the exact shape of the sigmoidal makes little difference once the network is trained, it is shown that it possesses particular properties that make it appealing for use while training. By paying attention to scaling it is illustrated that tanh (1.5*) has the additional advantage of equalizing training over layers. This result can easily generalize to several standard sigmoidal functions commonly in use.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信