边缘中心高效回归分析

Natascha Harth, C. Anagnostopoulos
{"title":"边缘中心高效回归分析","authors":"Natascha Harth, C. Anagnostopoulos","doi":"10.1109/EDGE.2018.00020","DOIUrl":null,"url":null,"abstract":"We introduce an edge-centric parametric predictive analytics methodology, which contributes to real-time regression model caching and selective forwarding in the network edge where communication overhead is significantly reduced as only model's parameters and sufficient statistics are disseminated instead of raw data obtaining high analytics quality. Moreover, sophisticated model selection algorithms are introduced to combine diverse local models for predictive modeling without transferring and processing data at edge gateways. We provide mathematical modeling, performance and comparative assessment over real data showing its benefits in edge computing environments.","PeriodicalId":396887,"journal":{"name":"2018 IEEE International Conference on Edge Computing (EDGE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Edge-Centric Efficient Regression Analytics\",\"authors\":\"Natascha Harth, C. Anagnostopoulos\",\"doi\":\"10.1109/EDGE.2018.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an edge-centric parametric predictive analytics methodology, which contributes to real-time regression model caching and selective forwarding in the network edge where communication overhead is significantly reduced as only model's parameters and sufficient statistics are disseminated instead of raw data obtaining high analytics quality. Moreover, sophisticated model selection algorithms are introduced to combine diverse local models for predictive modeling without transferring and processing data at edge gateways. We provide mathematical modeling, performance and comparative assessment over real data showing its benefits in edge computing environments.\",\"PeriodicalId\":396887,\"journal\":{\"name\":\"2018 IEEE International Conference on Edge Computing (EDGE)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Edge Computing (EDGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDGE.2018.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Edge Computing (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE.2018.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

我们引入了一种以边缘为中心的参数预测分析方法,该方法有助于在网络边缘进行实时回归模型缓存和选择性转发,其中通信开销显着降低,因为只有模型参数和足够的统计数据被传播,而不是原始数据获得高分析质量。此外,引入了复杂的模型选择算法,将不同的局部模型组合在一起进行预测建模,而无需在边缘网关传输和处理数据。我们提供数学建模,性能和对真实数据的比较评估,显示其在边缘计算环境中的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge-Centric Efficient Regression Analytics
We introduce an edge-centric parametric predictive analytics methodology, which contributes to real-time regression model caching and selective forwarding in the network edge where communication overhead is significantly reduced as only model's parameters and sufficient statistics are disseminated instead of raw data obtaining high analytics quality. Moreover, sophisticated model selection algorithms are introduced to combine diverse local models for predictive modeling without transferring and processing data at edge gateways. We provide mathematical modeling, performance and comparative assessment over real data showing its benefits in edge computing environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信