多机器人系统中控制器的在线超进化

Fernando Silva, L. Correia, A. Christensen
{"title":"多机器人系统中控制器的在线超进化","authors":"Fernando Silva, L. Correia, A. Christensen","doi":"10.1109/SASO.2016.7","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce online hyper-evolution (OHE) to accelerate and increase the performance of online evolution of robotic controllers. Robots executing OHE use the different sources of feedback information traditionally associated with controller evaluation to find effective evolutionary algorithms and controllers online during task execution. We present two approaches: OHE-fitness, which uses the fitness score of controllers as the criterion to select promising algorithms over time, and OHE-diversity, which relies on the behavioural diversity of controllers for algorithm selection. Both OHE-fitness and OHE-diversity are distributed across groups of robots that evolve in parallel. We assess the performance of OHE-fitness and of OHE-diversity in two foraging tasks with differing complexity, and in five configurations of a dynamic phototaxis task with varying evolutionary pressures. Results show that our OHE approaches: (i) outperform multiple state-of-the-art algorithms as they facilitate controllers with superior performance and faster evolution of solutions, and (ii) can increase effectiveness at different stages of evolution by combining the benefits of multiple algorithms over time. Overall, our study shows that OHE is an effective new paradigm to the synthesis of controllers for robots.","PeriodicalId":383753,"journal":{"name":"2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Online Hyper-evolution of Controllers in Multirobot Systems\",\"authors\":\"Fernando Silva, L. Correia, A. Christensen\",\"doi\":\"10.1109/SASO.2016.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce online hyper-evolution (OHE) to accelerate and increase the performance of online evolution of robotic controllers. Robots executing OHE use the different sources of feedback information traditionally associated with controller evaluation to find effective evolutionary algorithms and controllers online during task execution. We present two approaches: OHE-fitness, which uses the fitness score of controllers as the criterion to select promising algorithms over time, and OHE-diversity, which relies on the behavioural diversity of controllers for algorithm selection. Both OHE-fitness and OHE-diversity are distributed across groups of robots that evolve in parallel. We assess the performance of OHE-fitness and of OHE-diversity in two foraging tasks with differing complexity, and in five configurations of a dynamic phototaxis task with varying evolutionary pressures. Results show that our OHE approaches: (i) outperform multiple state-of-the-art algorithms as they facilitate controllers with superior performance and faster evolution of solutions, and (ii) can increase effectiveness at different stages of evolution by combining the benefits of multiple algorithms over time. Overall, our study shows that OHE is an effective new paradigm to the synthesis of controllers for robots.\",\"PeriodicalId\":383753,\"journal\":{\"name\":\"2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2016.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2016.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们引入在线超进化(OHE)来加速和提高机器人控制器在线进化的性能。执行OHE的机器人使用传统上与控制器评估相关的不同反馈信息来源,在任务执行过程中找到有效的进化算法和在线控制器。我们提出了两种方法:ohe适应度,它使用控制器的适应度分数作为选择有前途的算法的标准,以及ohe多样性,它依赖于控制器的行为多样性来选择算法。ohe适应度和ohe多样性都分布在平行进化的机器人群体中。我们评估了在两种不同复杂性的觅食任务中,以及在不同进化压力的动态趋光任务的五种配置下,ohe -适应度和ohe -多样性的表现。结果表明,我们的OHE方法:(i)优于多种最先进的算法,因为它们使控制器具有卓越的性能和更快的解决方案进化,并且(ii)可以通过随着时间的推移结合多种算法的优点来提高不同进化阶段的有效性。总的来说,我们的研究表明,OHE是一个有效的机器人控制器综合的新范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Hyper-evolution of Controllers in Multirobot Systems
In this paper, we introduce online hyper-evolution (OHE) to accelerate and increase the performance of online evolution of robotic controllers. Robots executing OHE use the different sources of feedback information traditionally associated with controller evaluation to find effective evolutionary algorithms and controllers online during task execution. We present two approaches: OHE-fitness, which uses the fitness score of controllers as the criterion to select promising algorithms over time, and OHE-diversity, which relies on the behavioural diversity of controllers for algorithm selection. Both OHE-fitness and OHE-diversity are distributed across groups of robots that evolve in parallel. We assess the performance of OHE-fitness and of OHE-diversity in two foraging tasks with differing complexity, and in five configurations of a dynamic phototaxis task with varying evolutionary pressures. Results show that our OHE approaches: (i) outperform multiple state-of-the-art algorithms as they facilitate controllers with superior performance and faster evolution of solutions, and (ii) can increase effectiveness at different stages of evolution by combining the benefits of multiple algorithms over time. Overall, our study shows that OHE is an effective new paradigm to the synthesis of controllers for robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信