{"title":"企业年报中的积极情绪是否具有信息价值?来自深度学习的证据","authors":"M. Azimi, Anup Agrawal","doi":"10.2139/ssrn.3258821","DOIUrl":null,"url":null,"abstract":"\n We use a novel text classification approach from deep learning to more accurately measure sentiment in a large sample of 10-Ks. In contrast to most prior literature, we find that positive and negative sentiments predict abnormal returns and abnormal trading volume around the 10-K filing date and future firm fundamentals and policies. Our results suggest that the qualitative information contained in corporate annual reports is richer than previously found. Both positive and negative sentiments are informative when measured accurately, but they do not have symmetric implications, suggesting that a net sentiment measure advocated by prior studies would be less informative. (JEL C81, D83, G10, G14, G30, M41)\n Received February 12, 2020; editorial decision January 5, 2021 by Editor Hui Chen","PeriodicalId":241211,"journal":{"name":"CompSciRN: Artificial Intelligence (Topic)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Is Positive Sentiment in Corporate Annual Reports Informative? Evidence from Deep Learning\",\"authors\":\"M. Azimi, Anup Agrawal\",\"doi\":\"10.2139/ssrn.3258821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We use a novel text classification approach from deep learning to more accurately measure sentiment in a large sample of 10-Ks. In contrast to most prior literature, we find that positive and negative sentiments predict abnormal returns and abnormal trading volume around the 10-K filing date and future firm fundamentals and policies. Our results suggest that the qualitative information contained in corporate annual reports is richer than previously found. Both positive and negative sentiments are informative when measured accurately, but they do not have symmetric implications, suggesting that a net sentiment measure advocated by prior studies would be less informative. (JEL C81, D83, G10, G14, G30, M41)\\n Received February 12, 2020; editorial decision January 5, 2021 by Editor Hui Chen\",\"PeriodicalId\":241211,\"journal\":{\"name\":\"CompSciRN: Artificial Intelligence (Topic)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompSciRN: Artificial Intelligence (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3258821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Artificial Intelligence (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3258821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Is Positive Sentiment in Corporate Annual Reports Informative? Evidence from Deep Learning
We use a novel text classification approach from deep learning to more accurately measure sentiment in a large sample of 10-Ks. In contrast to most prior literature, we find that positive and negative sentiments predict abnormal returns and abnormal trading volume around the 10-K filing date and future firm fundamentals and policies. Our results suggest that the qualitative information contained in corporate annual reports is richer than previously found. Both positive and negative sentiments are informative when measured accurately, but they do not have symmetric implications, suggesting that a net sentiment measure advocated by prior studies would be less informative. (JEL C81, D83, G10, G14, G30, M41)
Received February 12, 2020; editorial decision January 5, 2021 by Editor Hui Chen