关于编织群的有限thurston型排序

Tetsuya Ito
{"title":"关于编织群的有限thurston型排序","authors":"Tetsuya Ito","doi":"10.1515/GCC.2010.009","DOIUrl":null,"url":null,"abstract":"Abstract We prove that for any finite Thurston-type ordering < T on the braid group Bn , the restriction to the positive braid monoid (, < T ) is a well-ordered set of order type ω ω n–2 . The proof uses a combinatorial description of the ordering < T . Our combinatorial description is based on a new normal form for positive braids which we call the (-normal form. It can be seen as a generalization of Burckel's normal form and Dehornoy's Φ-normal form (alternating normal form).","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On finite Thurston-type orderings of braid groups\",\"authors\":\"Tetsuya Ito\",\"doi\":\"10.1515/GCC.2010.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove that for any finite Thurston-type ordering < T on the braid group Bn , the restriction to the positive braid monoid (, < T ) is a well-ordered set of order type ω ω n–2 . The proof uses a combinatorial description of the ordering < T . Our combinatorial description is based on a new normal form for positive braids which we call the (-normal form. It can be seen as a generalization of Burckel's normal form and Dehornoy's Φ-normal form (alternating normal form).\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/GCC.2010.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/GCC.2010.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

摘要证明了对于编织群Bn上的任意有限thurston型序< T,对正编织单群(,< T)的约束是阶型为ω ω n-2的良序集。证明使用排序< T的组合描述。我们的组合描述是基于正辫的一种新范式,我们称之为(-范式)。它可以看作是Burckel范式和Dehornoy Φ-normal范式(交替范式)的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On finite Thurston-type orderings of braid groups
Abstract We prove that for any finite Thurston-type ordering < T on the braid group Bn , the restriction to the positive braid monoid (, < T ) is a well-ordered set of order type ω ω n–2 . The proof uses a combinatorial description of the ordering < T . Our combinatorial description is based on a new normal form for positive braids which we call the (-normal form. It can be seen as a generalization of Burckel's normal form and Dehornoy's Φ-normal form (alternating normal form).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信