基于似然评分计算的人体部位检测

M. Ramanathan, W. Yau, E. Teoh
{"title":"基于似然评分计算的人体部位检测","authors":"M. Ramanathan, W. Yau, E. Teoh","doi":"10.1109/CIBIM.2014.7015458","DOIUrl":null,"url":null,"abstract":"Detection and labelling of human body parts in videos or images can provide vital clues in analysis of human behaviour and action. Detecting body parts separately is considerably difficult due to the huge amount of intra-class variations exhibited. In most methods, researchers tend to impose some connectivity or shape constraints on the classifier output to obtain the final detected body parts. In this paper, we propose a novel idea to compute likelihood scores for each of the initial classified body parts based on Bayes theorem using Extreme learning machine's (ELM) output value (different from the predicted class label). Also, we do not impose any other constraints on the initially detected body parts. We use Histogram of oriented gradients (HOG) features and ELM for initial classification. We also employ a voting scheme that uses inter-frame detected segments to filter out errors and detect body parts in the current frame. Experiments have been conducted to show our method can identify body parts in different body postures quiet appreciably.","PeriodicalId":432938,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Human body part detection using likelihood score computations\",\"authors\":\"M. Ramanathan, W. Yau, E. Teoh\",\"doi\":\"10.1109/CIBIM.2014.7015458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection and labelling of human body parts in videos or images can provide vital clues in analysis of human behaviour and action. Detecting body parts separately is considerably difficult due to the huge amount of intra-class variations exhibited. In most methods, researchers tend to impose some connectivity or shape constraints on the classifier output to obtain the final detected body parts. In this paper, we propose a novel idea to compute likelihood scores for each of the initial classified body parts based on Bayes theorem using Extreme learning machine's (ELM) output value (different from the predicted class label). Also, we do not impose any other constraints on the initially detected body parts. We use Histogram of oriented gradients (HOG) features and ELM for initial classification. We also employ a voting scheme that uses inter-frame detected segments to filter out errors and detect body parts in the current frame. Experiments have been conducted to show our method can identify body parts in different body postures quiet appreciably.\",\"PeriodicalId\":432938,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBIM.2014.7015458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2014.7015458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在视频或图像中检测和标记人体部位可以为分析人类行为和行动提供重要线索。单独检测身体部位是相当困难的,因为存在大量的类内差异。在大多数方法中,研究人员倾向于对分类器输出施加一些连通性或形状约束,以获得最终检测到的身体部位。在本文中,我们提出了一种新颖的想法,基于贝叶斯定理,使用极限学习机(ELM)的输出值(不同于预测的类标签)计算每个初始分类身体部位的似然分数。此外,我们不会对最初检测到的身体部位施加任何其他限制。我们使用定向梯度直方图(HOG)特征和ELM进行初始分类。我们还采用了一种投票方案,该方案使用帧间检测到的片段来过滤错误并检测当前帧中的身体部位。实验表明,该方法能较好地识别不同体态的人体部位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human body part detection using likelihood score computations
Detection and labelling of human body parts in videos or images can provide vital clues in analysis of human behaviour and action. Detecting body parts separately is considerably difficult due to the huge amount of intra-class variations exhibited. In most methods, researchers tend to impose some connectivity or shape constraints on the classifier output to obtain the final detected body parts. In this paper, we propose a novel idea to compute likelihood scores for each of the initial classified body parts based on Bayes theorem using Extreme learning machine's (ELM) output value (different from the predicted class label). Also, we do not impose any other constraints on the initially detected body parts. We use Histogram of oriented gradients (HOG) features and ELM for initial classification. We also employ a voting scheme that uses inter-frame detected segments to filter out errors and detect body parts in the current frame. Experiments have been conducted to show our method can identify body parts in different body postures quiet appreciably.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信