不确定条件下数据驱动的能源化工过程鲁棒优化:综述与教程

C. Ning, Longyan Li
{"title":"不确定条件下数据驱动的能源化工过程鲁棒优化:综述与教程","authors":"C. Ning, Longyan Li","doi":"10.1109/IAI55780.2022.9976639","DOIUrl":null,"url":null,"abstract":"In recent years, data-driven robust optimization (DDRO) is becoming a popular and effective paradigm to address the challenging issue of uncertainty in energy chemical processes. This paper provides an overview of recent advances in the field of DDRO, with a primary focus on its methods and applications in process industries. Firstly, a brief introduction to various robust optimization model formulations and solution algorithms is presented. Secondly, research achievements of machine-learning enabled uncertainty sets, the corresponding DDRO, and variant techniques are summarized and analyzed in a systematic manner. Additionally, tutorial-like numerical examples are used to illustrate merits of DDRO compared with conventional robust optimization. Finally, fruitful applications of DDRO in energy chemical processes are encapsulated and categorized from domain perspectives.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Robust Optimization for Energy Chemical Processes under Uncertainties: A Review and Tutorial\",\"authors\":\"C. Ning, Longyan Li\",\"doi\":\"10.1109/IAI55780.2022.9976639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, data-driven robust optimization (DDRO) is becoming a popular and effective paradigm to address the challenging issue of uncertainty in energy chemical processes. This paper provides an overview of recent advances in the field of DDRO, with a primary focus on its methods and applications in process industries. Firstly, a brief introduction to various robust optimization model formulations and solution algorithms is presented. Secondly, research achievements of machine-learning enabled uncertainty sets, the corresponding DDRO, and variant techniques are summarized and analyzed in a systematic manner. Additionally, tutorial-like numerical examples are used to illustrate merits of DDRO compared with conventional robust optimization. Finally, fruitful applications of DDRO in energy chemical processes are encapsulated and categorized from domain perspectives.\",\"PeriodicalId\":138951,\"journal\":{\"name\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI55780.2022.9976639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,数据驱动的鲁棒优化(DDRO)正在成为解决能源化工过程中不确定性问题的一种流行而有效的范式。本文概述了DDRO领域的最新进展,主要关注其方法和在过程工业中的应用。首先,简要介绍了各种鲁棒优化模型的公式和求解算法。其次,系统总结和分析了机器学习支持的不确定性集、相应的DDRO和变体技术的研究成果。此外,还使用了类似教程的数值示例来说明DDRO与传统鲁棒优化相比的优点。最后,从领域的角度对DDRO在能源化工过程中的成功应用进行了概括和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Robust Optimization for Energy Chemical Processes under Uncertainties: A Review and Tutorial
In recent years, data-driven robust optimization (DDRO) is becoming a popular and effective paradigm to address the challenging issue of uncertainty in energy chemical processes. This paper provides an overview of recent advances in the field of DDRO, with a primary focus on its methods and applications in process industries. Firstly, a brief introduction to various robust optimization model formulations and solution algorithms is presented. Secondly, research achievements of machine-learning enabled uncertainty sets, the corresponding DDRO, and variant techniques are summarized and analyzed in a systematic manner. Additionally, tutorial-like numerical examples are used to illustrate merits of DDRO compared with conventional robust optimization. Finally, fruitful applications of DDRO in energy chemical processes are encapsulated and categorized from domain perspectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信