基于GPGPU的六边形框架中基于轮廓的模板匹配优化

M. Bhagya, S. Tripathi, P. S. Thilagam
{"title":"基于GPGPU的六边形框架中基于轮廓的模板匹配优化","authors":"M. Bhagya, S. Tripathi, P. S. Thilagam","doi":"10.1109/HIS.2014.7086186","DOIUrl":null,"url":null,"abstract":"This paper presents a technique to optimize contour based template matching by using General Purpose computation on Graphics Processing Units (GPGPU). Contour based template matching requires edge detection and searching for presence of a template in an entire image, real time implementation of which is not trivial. Using the proposed solution, we could achieve an implementation fast enough to process a standard video (640 × 480) in real time with sufficient accuracy.","PeriodicalId":161103,"journal":{"name":"2014 14th International Conference on Hybrid Intelligent Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of countour based template matching using GPGPU based hexagonal framework\",\"authors\":\"M. Bhagya, S. Tripathi, P. S. Thilagam\",\"doi\":\"10.1109/HIS.2014.7086186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a technique to optimize contour based template matching by using General Purpose computation on Graphics Processing Units (GPGPU). Contour based template matching requires edge detection and searching for presence of a template in an entire image, real time implementation of which is not trivial. Using the proposed solution, we could achieve an implementation fast enough to process a standard video (640 × 480) in real time with sufficient accuracy.\",\"PeriodicalId\":161103,\"journal\":{\"name\":\"2014 14th International Conference on Hybrid Intelligent Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2014.7086186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2014.7086186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于图形处理器(GPGPU)通用计算的轮廓模板匹配优化技术。基于轮廓的模板匹配需要在整个图像中进行边缘检测和搜索模板的存在,实时实现是非常困难的。使用所提出的解决方案,我们可以实现足够快的实现,以足够的精度实时处理标准视频(640 × 480)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of countour based template matching using GPGPU based hexagonal framework
This paper presents a technique to optimize contour based template matching by using General Purpose computation on Graphics Processing Units (GPGPU). Contour based template matching requires edge detection and searching for presence of a template in an entire image, real time implementation of which is not trivial. Using the proposed solution, we could achieve an implementation fast enough to process a standard video (640 × 480) in real time with sufficient accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信