有监督半结构化数据分类综述

Lijun Zhang, Ning Li, Zhanhuai Li
{"title":"有监督半结构化数据分类综述","authors":"Lijun Zhang, Ning Li, Zhanhuai Li","doi":"10.1109/DSAA53316.2021.9564205","DOIUrl":null,"url":null,"abstract":"Many collaboratively building resources, such as Wikipedia, Weibo and Quora, exist in the form of semi-structured data. The semi-structured data has been widely used in areas such as data integration, data distribution, data storage, data management, information retrieval and knowledge management. For large volumes of semi-structured data on the Web, semi-structured data classification technique can group them into different categories by their structure and/or content information. Supervised semi-structured data classification plays an important role in many applications. This paper provides an overview of the literature in the area of supervised semi-structured data classification. A general framework for semi-structured data classification is presented, which is mainly composed of two steps: feature extraction and model building. Several different representation models of semi-structured data are discussed, mainly including rooted labeled tree model, feature vector space model and feature set model. A large selection of semi-structured data classification approaches are reviewed in detail from two aspects: based on structure only and based on both structure and content. Finally, several future research directions for semistructured data classification are presented.","PeriodicalId":129612,"journal":{"name":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Overview on Supervised Semi-structured Data Classification\",\"authors\":\"Lijun Zhang, Ning Li, Zhanhuai Li\",\"doi\":\"10.1109/DSAA53316.2021.9564205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many collaboratively building resources, such as Wikipedia, Weibo and Quora, exist in the form of semi-structured data. The semi-structured data has been widely used in areas such as data integration, data distribution, data storage, data management, information retrieval and knowledge management. For large volumes of semi-structured data on the Web, semi-structured data classification technique can group them into different categories by their structure and/or content information. Supervised semi-structured data classification plays an important role in many applications. This paper provides an overview of the literature in the area of supervised semi-structured data classification. A general framework for semi-structured data classification is presented, which is mainly composed of two steps: feature extraction and model building. Several different representation models of semi-structured data are discussed, mainly including rooted labeled tree model, feature vector space model and feature set model. A large selection of semi-structured data classification approaches are reviewed in detail from two aspects: based on structure only and based on both structure and content. Finally, several future research directions for semistructured data classification are presented.\",\"PeriodicalId\":129612,\"journal\":{\"name\":\"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA53316.2021.9564205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA53316.2021.9564205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多协同构建的资源,如维基百科、微博和Quora,都以半结构化数据的形式存在。半结构化数据已广泛应用于数据集成、数据分布、数据存储、数据管理、信息检索和知识管理等领域。对于Web上大量的半结构化数据,半结构化数据分类技术可以根据数据的结构和/或内容信息将数据分成不同的类别。有监督的半结构化数据分类在许多应用中起着重要作用。本文对有监督半结构化数据分类领域的文献进行了综述。提出了一种半结构化数据分类的总体框架,该框架主要由特征提取和模型构建两个步骤组成。讨论了半结构化数据的几种不同的表示模型,主要包括根标记树模型、特征向量空间模型和特征集模型。从两个方面详细回顾了大量的半结构化数据分类方法:仅基于结构和基于结构和内容。最后,对半结构化数据分类今后的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Overview on Supervised Semi-structured Data Classification
Many collaboratively building resources, such as Wikipedia, Weibo and Quora, exist in the form of semi-structured data. The semi-structured data has been widely used in areas such as data integration, data distribution, data storage, data management, information retrieval and knowledge management. For large volumes of semi-structured data on the Web, semi-structured data classification technique can group them into different categories by their structure and/or content information. Supervised semi-structured data classification plays an important role in many applications. This paper provides an overview of the literature in the area of supervised semi-structured data classification. A general framework for semi-structured data classification is presented, which is mainly composed of two steps: feature extraction and model building. Several different representation models of semi-structured data are discussed, mainly including rooted labeled tree model, feature vector space model and feature set model. A large selection of semi-structured data classification approaches are reviewed in detail from two aspects: based on structure only and based on both structure and content. Finally, several future research directions for semistructured data classification are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信