{"title":"租赁平方法、最陡下降法和共轭梯度法在大气测深数据分析中的比较研究","authors":"K. Arai","doi":"10.14569/IJARAI.2013.020906","DOIUrl":null,"url":null,"abstract":"Comparative study among Least Square Method: LSM, Steepest Descent Method: SDM, and Conjugate Gradient Method: CGM for atmospheric sounder data analysis (estimation of vertical profiles for water vapor) is conducted. Through simulation studies, it is found that CGM shows the best estimation accuracy followed by SDM and LSM. Method dependency on atmospheric models is also clarified.","PeriodicalId":323606,"journal":{"name":"International Journal of Advanced Research in Artificial Intelligence","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Study Among Lease Square Method, Steepest Descent Method, and Conjugate Gradient Method for Atmopsheric Sounder Data Analysis\",\"authors\":\"K. Arai\",\"doi\":\"10.14569/IJARAI.2013.020906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparative study among Least Square Method: LSM, Steepest Descent Method: SDM, and Conjugate Gradient Method: CGM for atmospheric sounder data analysis (estimation of vertical profiles for water vapor) is conducted. Through simulation studies, it is found that CGM shows the best estimation accuracy followed by SDM and LSM. Method dependency on atmospheric models is also clarified.\",\"PeriodicalId\":323606,\"journal\":{\"name\":\"International Journal of Advanced Research in Artificial Intelligence\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/IJARAI.2013.020906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/IJARAI.2013.020906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Study Among Lease Square Method, Steepest Descent Method, and Conjugate Gradient Method for Atmopsheric Sounder Data Analysis
Comparative study among Least Square Method: LSM, Steepest Descent Method: SDM, and Conjugate Gradient Method: CGM for atmospheric sounder data analysis (estimation of vertical profiles for water vapor) is conducted. Through simulation studies, it is found that CGM shows the best estimation accuracy followed by SDM and LSM. Method dependency on atmospheric models is also clarified.